113 research outputs found

    Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer's Disease Treatment

    Get PDF
    ADAM (a disintegrin and metalloproteinase) is a family of widely expressed, transmembrane and secreted proteins of approximately 750 amino acids in length with functions in cell adhesion and proteolytic processing of the ectodomains of diverse cell-surface receptors and signaling molecules. ADAM10 is the main α-secretase that cleaves APP (amyloid precursor protein) in the non-amyloidogenic pathway inhibiting the formation of β-amyloid peptide, whose accumulation and aggregation leads to neuronal degeneration in Alzheimer's disease (AD). ADAM10 is a membrane-anchored metalloprotease that sheds, besides APP, the ectodomain of a large variety of cell-surface proteins including cytokines, adhesion molecules and notch. APP cleavage by ADAM10 results in the production of an APP-derived fragment, sAPPα, which is neuroprotective. As increased ADAM10 activity protects the brain from β-amyloid deposition in AD, this strategy has been proved to be effective in treating neurodegenerative diseases, including AD. Here, we describe the physiological mechanisms regulating ADAM10 expression at different levels, aiming to propose strategies for AD treatment. We report in this review on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or translational and post-translational levels. In addition, we describe the conditions that can change ADAM10 expression in vitro and in vivo, and discuss how this knowledge may help in AD treatment. Regulation of ADAM10 is achieved by multiple mechanisms that include transcriptional, translational and post-translational strategies, which we will summarize in this review

    Study of the transport of substances across the blood-brain barrier with the 8D3 anti-transferrin receptor antibody

    Get PDF
    Podeu consultar el llibre complet a: http://hdl.handle.net/2445/128014Numerous strategies have been proposed to overcome the blood-brain barrier (BBB) and efficiently deliver therapeutic agents to the brain. One of these strategies consists of linking the pharmacologically active substance to a molecular vector that acts as a molecular Trojan Horse and is capable of crossing the BBB using a receptor-mediated transcellular transport system of the brain capillary endothelial cells (BCECs). The transferrin receptor (TfR) is related to a transcytosis process in these cells, and the 8D3 monoclonal antibody (mAb), directed against the mouse TfR, is able to induce a receptor response. Thus, the 8D3 antibody could be a potential molecular Trojan Horse to transport pharmacologically active substances across the BBB. On these bases, a series of experiments were performed where the 8D3 antibody was conjugated to different cargoes, the resulting constructs were administered in vivo to mice, and the distribution and intracellular mechanisms that these constructs undergo at the BBB were studied. Our results indicated a TfR-mediated and clathrin-dependent internalization process by which the 8D3-cargo constructs enters the BCEC. The resulting endocytic vesicles follow at least two different routes. On one hand, most vesicles enter intracellular processes of vesicular fusion and rearrangement in which the cargo is guided to late endosomes, multivesicular bodies or lysosomes. On the other hand, a small but not negligible percentage of the vesicles follow a different route in which they fuse with the abluminal membrane and open towards the basal lamina, indicating a potential route for the delivery of therapeutic substances. In this route, however, the 8D3−cargo remain fixed to the abluminal membrane, indicating that the 8D3 is maintained linked to the TfR, and the cargo does not go beyond the basal membrane. Altogether, different optimization approaches need to be developed for efficient drug delivery, but receptor-mediated transport (RMT) continues to be one of the most promising strategies to overcome the BBB

    Adaptive plasticity in the hippocampus of young mice intermittently exposed to MDMA could be the origin of memory deficits.

    Get PDF
    (±)3,4-Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. This study was designed to evaluate whether MDMA exposure affects their recognition memory and hippocampal expression of plasticity markers. Mice were administered with increasing doses of MDMA once per week for 8 weeks (three times in 1 day, every 3 h) and killed 2 weeks (2w) or 3 months (3m) later. The treatment did not modify hippocampal tryptophan hydroxylase 2, a serotonergic indicator, but induced an initial reduction in dopaminergic markers in substantia nigra, which remained stable for at least 3 months. In parallel, MDMA produced a decrease in dopamine (DA) levels in the striatum at 2w, which were restored 3 months later, suggesting dopaminergic terminal regeneration (sprouting phenomenon). Moreover, recognition memory was assessed using the object recognition test. Young (2w) and mature (3m) adult mice exhibited impaired memory after 24-h but not after just 1-h retention interval. Two weeks after the treatment, animals showed constant levels of CREB but an increase in its phosphorylated form and in c-Fos expression. Brain-derived neurotrophic factor (BDNF) and especially Arc overexpression was sustained and long-lasting. We cannot rule out the absence of MDMA injury in the hippocampus being due to the generation of BDNF. The levels of NMDAR2B, PSD-95, and synaptophysin were unaffected. In conclusion, the young mice exposed to MDMA showed increased expression of early key markers of plasticity, which sometimes remained for 3 months, and suggests hippocampal maladaptive plasticity that could explain memory deficits evidenced here

    Endothelial-specific deficiency of megalin in the brain protects mice against high-fat diet challenge

    Get PDF
    Background: The increasing risk of obesity and diabetes among other metabolic disorders are the consequence of shifts in dietary patterns with high caloric-content food intake. We previously reported that megalin regulates energy homeostasis using blood-brain barrier (BBB) endothelial megalin-deficient (EMD) mice, since these animals developed obesity and metabolic syndrome upon normal chow diet administration. Obesity in mid-life appears to be related to greater dementia risk and represents an increasing global health issue. We demonstrated that EMD phenotype induced impaired learning ability and recognition memory, neurodegeneration, neuroinflammation, reduced neurogenesis, and mitochondrial deregulation associated with higher mitochondrial mass in cortical tissue

    Trafficking of Gold Nanoparticles Coated with the 8D3 Anti-Transferrin Receptor Antibody at the Mouse Blood-Brain Barrier

    Get PDF
    Receptor-mediated transcytosis has been widely studied as a possible strategy to transport neurotherapeutics across the blood-brain barrier (BBB). Monoclonal antibodies directed against the transferrin receptor (TfR) have been proposed as potential carrier candidates. A better understanding of the mechanisms involved in their cellular uptake and intracellular trafficking is required and could critically contribute to the improvement of delivery methods. Accordingly, we studied here the trafficking of gold nanoparticles (AuNPs) coated with the 8D3 anti-transferrin receptor antibody at the mouse BBB. 8D3-AuNPs were intravenously administered to mice and allowed to recirculate for a range of times, from 10 min to 24 h, before brain extraction and analysis by transmission electron microscope techniques. Our results indicated a TfR-mediated and clathrin-dependent internalization process by which 8D3-AuNPs internalize individually in vesicles. These vesicles then follow at least two different routes. On one hand, most vesicles enter intracellular processes of vesicular fusion and rearrangement in which the AuNPs end up accumulating in late endosomes, multivesicular bodies or lysosomes, which present a high AuNP content. On the other hand, a small percentage of the vesicles follow a different route in which they fuse with the abluminal membrane and open to the basal membrane. In these cases, the 8D3-AuNPs remain attached to the abluminal membrane, which suggests an endosomal escape, but not dissociation from TfR. Altogether, although receptor-mediated transport continues to be one of the most promising strategies to overcome the BBB, different optimization approaches need to be developed for efficient drug delivery. Keywords: blood−brain barrier; drug delivery; electron microscopy; monoclonal antibodies; receptor-mediated transport; transferrin receptor

    JNK isoforms control adult mammal hippocampal neurogenesis

    Get PDF
    [eng] In mammals, the term "Adult Neurogenesis” (AN) defines the process through which, throughout adulthood, new neurons are produced from neural stem cells (NSC). These NSC are located in a specific niche, concretely, in the subventricular zone (SVZ), lining the lateral ventricles, and in the subgranular zone (SGZ) in the dentate gyrus (DG) of the hippocampus. Controversially, new data have questioned the existence of this AN in the human brain seeing how only populations of immature neurons (IN), broadly dispersed within SGZ, have been detected. Either way, neurogenic activity in the hippocampus has been correlated with learning, memory formation and behavioral responses to stress, just like with the pathophysiology of many brain diseases and mood disorders. Various extracellular and intracellular stimuli have been shown to modulate survival, proliferation, and differentiation of adult-born cells in the hippocampus, especially through conserved stimuli-response mechanisms like the JNKs. In the present review, the JNK pathway and their control of adult hippocampal neurogenesis are described, evidencing the critical role of isoform JNK1.[cat] En mamíferos, el término “Neurogenesis Adulta (NA)”, se define como el proceso a través del cual, en adultos, se producen nuevas neuronas granulares a partir de células madre neurales (CMN). Estas CMN estan ubicadas en microambientes específicos, en concreto en la zona subventicular (ZSV), recubriendo los ventriculos laterales, y en la zona subgranular (ZSG) del giro dentado del hipocampo (GD). Sin embargo, nuevas informaciones han cuestionado la existencia de este proceso de neurogenesis adulta en el cerebro humano, ya que solamente se han detectado poblaciones de neuronas inmaduras (NI) dispersas a lo largo de la ZSG. Independientemente, la existencia de una actividad neurogénica en el hipocampo adulto se ha correlacionado con el aprendizaje, la formación de memoria y en el comportamiento ante situaciones de estrés, así como en la patofisiologia de diferentes patologías del cerebro, incluso en casos de alteraciones del estado de ánimo. Se ha demostrado que diferentes estímulos extracelulares e intracelulares controlan la supervivencia, la proliferación y la diferenciación de las nuevas neuronas del hipocampo, especialmente a través de mecanismos conservados de respuesta a estímulos como las JNKs. En la presente revisión se describe las JNK y su control de la neurogénesis hipocampal adulta, evidenciando el papel crucial de la isoforma JNK1

    Effects of Nutrition on Cognitive Function in Adults with or without Cognitive Impairment: A Systematic Review of Randomized Controlled Clinical Trials

    Get PDF
    New dietary approaches for the prevention of cognitive impairment are being investigated. However, evidence from dietary interventions is mainly from food and nutrient supplement interventions, with inconsistent results and high heterogeneity between trials. We conducted a comprehensive systematic search of randomized controlled trials (RCTs) published in MEDLINE-PubMed, from January 2018 to July 2021, investigating the impact of dietary counseling, as well as food-based and dietary supplement interventions on cognitive function in adults with or without cognitive impairment. Based on the search strategy, 197 eligible publications were used for data abstraction. Finally, 61 articles were included in the analysis. There was reasonable evidence that dietary patterns, as well as food and dietary supplements improved cognitive domains or measures of brain integrity. The Mediterranean diet showed promising results, whereas the role of the DASH diet was not clear. Healthy food consumption improved cognitive function, although the quality of these studies was relatively low. The role of dietary supplements was mixed, with strong evidence of the benefits of polyphenols and combinations of nutrients, but with low evidence for PUFAs, vitamin D, specific protein, amino acids, and other types of supplements. Further well-designed RCTs are needed to guide the development of dietary approaches for the prevention of cognitive impairment

    Involvement of JNK1 in neuronal polarization during brain development

    Get PDF
    The c-Jun N-terminal Kinases (JNKs) are a group of regulatory elements responsible for the control of a wide array of functions within the cell. In the central nervous system (CNS), JNKs are involved in neuronal polarization, starting from the cell division of neural stem cells and ending with their final positioning when migrating and maturing. This review will focus mostly on isoform JNK1, the foremost contributor of total JNK activity in the CNS. Throughout the text, research from multiple groups will be summarized and discussed in order to describe the involvement of the JNKs in the different steps of neuronal polarization. The data presented support the idea that isoform JNK1 is highly relevant to the regulation of many of the processes that occur in neuronal development in the CNS

    Role of JNK in neurodegenerative diseases

    Full text link
    Podeu consultar el llibre complet a: http://hdl.handle.net/2445/32393The c-Jun N-terminal kinases (JNK) are members of the MAPK family and can be activated by different stimuli such as cellular stress, heat shock and ultra-violet irradiation. JNKs have different physiological functions and they have been linked to apoptosis in different cell types. Therefore, the JNK signalling pathway is an important target to prevent cell death. In the present chapter, the role of JNKs in neurodegenerative diseases will be discussed, as well as the pharmacological compounds that inhibit this signalling pathway as therapeutic intervention to prevent neuronal death

    Behaviour and cognitive changes correlated with hippocampal neuroinflammaging and neuronal markers in female SAMP8, a model of accelerated senescence

    Get PDF
    Senescence accelerated mice P8 (SAMP8) is a phenotypic model of age, characterized by deficits in memory and altered behaviour. Here determined the effect of age in SAMP8, compared with the resistant strain, SAMR1, in behaviour and learning parameters linking these disturbances with oxidative stress environment. We found impairment in emotional behaviour with regard to fear and anxiety in young SAMP8 vs. age-mated SAMR1. Differences were attenuated with age. In contrast, learning capabilities are worse in SAMP8, both in young and aged animals, with regard to SAMR1. These waves in behaviour and cognition were correlated with an excess of Oxidative stress (OS) in SAMP8 at younger ages that diminished with age. In this manner, we found changes in the hippocampal expression of ALDH2, IL-6, HMOX1, COX2, CXCL10, iNOS, and MCP-1 with an altered amyloidogenic pathway by increasing the Amyloid beta precursor protein (APP) and BACE1, and reduced ADAM10 expression; in addition, astrogliosis and neuronal markers decreased. Moreover, Superoxide dismutase 1 (SOD1) and Nuclear factor-kappa beta (NF-kβ) expression and protein levels were higher in younger SAMP8 than in SAMR1. In conclusion, the accelerated senescence process present in SAMP8 can be linked with an initial deregulation in redox homeostasis, named neuroinflammaging, by inducing molecular changes that lead to neuroinflammation and the neurodegenerative process. These changes are reflected in the emotional and cognitive behaviour of SAMP8 that differs from that of SAMR1 and that highlighted the importance of earlier oxidative processes in the onset of neurodegeneration
    corecore