5 research outputs found
Author Correction: Dynamic mitochondrial responses to a high-fat diet in Drosophila melanogaster
An amendment to this paper has been published and can be accessed via a link at the top of the paper
Omega-3 Monoacylglyceride Effects on Longevity, Mitochondrial Metabolism and Oxidative Stress: Insights from <i>Drosophila melanogaster</i>
During the last decade, essential polyunsaturated fatty acids (PUFAs) such as eicosatetraenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine sources have been investigated as nonpharmacological dietary supplements to improve different pathological conditions, as well as aging. The aim of this study was to determine the effects of dietary n-3 PUFA monoacylglycerides (MAG, both EPA and DHA) on the mitochondrial metabolism and oxidative stress of a short-lifespan model, Drosophila melanogaster, sampled at five different ages. Our results showed that diets supplemented with MAG-EPA and MAG-DHA increased median lifespan by 14.6% and decreased mitochondrial proton leak resulting in an increase of mitochondrial coupling. The flies fed on MAG-EPA also had higher electron transport system capacity and mitochondrial oxidative capacities. Moreover, both n-3 PUFAs delayed the occurrence of lipid peroxidation but only flies fed the MAG-EPA diet showed maintenance of superoxide dismutase activity during aging. Our study therefore highlights the potential of n-3 PUFA monoacylglycerides as nutraceutical compounds to delay the onset of senescence by acting directly or indirectly on the mitochondrial metabolism and suggests that Drosophila could be a relevant model for the study of the fundamental mechanisms linking the effects of n-3 PUFAs to aging
Correction: OPA1 deficiency impairs oxidative metabolism in cycling cells, underlining a translational approach for degenerative diseases
International audienceDominant optic atrophy is an optic neuropathy with varying clinical symptoms and progression. A severe disorder is associated with certain OPA1 mutations and includes additional symptoms for >20% of patients. This underscores the consequences of OPA1 mutations in different cellular populations, not only retinal ganglionic cells. We assessed the effects of OPA1 loss of function on oxidative metabolism and antioxidant defences using an RNAsilencing strategy in a human epithelial cell line. We observed a decrease in the mitochondrial respiratory chain complexes, associated with a reduction in aconitase activity related to an increase in reactive oxygen species (ROS) production. In response, the NRF2 (also known as NFE2L2) transcription factor was translocated into the nucleus and upregulated SOD1 and GSTP1. This study highlights the effects of OPA1 deficiency on oxidative metabolism in replicative cells, as already shown in neurons. It underlines a translational process to use cycling cells to circumvent and describe oxidative metabolism. Moreover, it paves the way to predict the evolution of dominant optic atrophy using mathematical models that consider mitochondrial ROS production and thei detoxifying pathway