33 research outputs found

    Bistable buckled beam and force actuation: Experimental validations

    Get PDF
    AbstractThis paper presents recent experimental results on the switching of a simply supported buckled beam. Moreover, the present work is focussed on the experimental validation of a switching mechanism of a bistable beam presented in details in Camescasse et al. (2013). An actuating force is applied perpendicularly to the beam axis. Particular attention is paid to the influence of the force position on the beam on the switching scenario. The experimental set-up is described and special care is devoted to the procedure of experimental tests highlighting the main difficulties and how these difficulties have been overcome. Two situations are examined: (i) a beam subject to mid-span actuation and (ii) off-center actuation. The bistable beam responses to the loading are experimentally determined for the buckling force and actuating force as a function of the vertical position of the applied force (displacement control). A series of photos demonstrates the scenarios for both situations and the bifurcation between buckling modes are clearly shown, as well. The influence of the application point of the force on the bifurcation force is experimentally studied which leads to a minimum for the bifurcation actuating force. All the results extracted from experimental tests are compared to those coming from the modeling investigation presented in a previous work (Camescasse et al., 2013) which ascertains the proposed model for a bistable beam

    Nonequilibrium plasmons in optically excited semiconductors

    Get PDF
    An analysis of the nonequilibrium plasmon spectrum of optically excited semiconductors is presented. It is shown that semiconductors with preexisting carrier populations, due, e.g., to a prepump or doping, may exhibit a rich collective excitation spectrum including additional plasmon modes. If these modes are weakly damped they give rise to an essential acceleration of thermalization processes. It is found that the most favorable conditions for this effect to appear are low temperature and p doping. These theoretical predictions are fully confirmed by results of comprehensive pump-probe experiments on bulk GaAs in the presence of a prepump and in doped samples

    Quantum kinetics and thermalization in a particle bath model

    Full text link
    We study the dynamics of relaxation and thermalization in an exactly solvable model of a particle interacting with a harmonic oscillator bath. Our goal is to understand the effects of non-Markovian processes on the relaxational dynamics and to compare the exact evolution of the distribution function with approximate Markovian and Non-Markovian quantum kinetics. There are two different cases that are studied in detail: i) a quasiparticle (resonance) when the renormalized frequency of the particle is above the frequency threshold of the bath and ii) a stable renormalized `particle' state below this threshold. The time evolution of the occupation number for the particle is evaluated exactly using different approaches that yield to complementary insights. The exact solution allows us to investigate the concept of the formation time of a quasiparticle and to study the difference between the relaxation of the distribution of bare particles and that of quasiparticles. We derive a non-Markovian quantum kinetic equation which resums the perturbative series and includes off-shell effects. A Markovian approximation that includes off-shell contributions and the usual Boltzmann equation (energy conserving) are obtained from the quantum kinetic equation in the limit of wide separation of time scales upon different coarse-graining assumptions. The relaxational dynamics predicted by the non-Markovian, Markovian and Boltzmann approximations are compared to the exact result. The Boltzmann approach is seen to fail in the case of wide resonances and when threshold and renormalization effects are important.Comment: 39 pages, RevTex, 14 figures (13 eps figures

    Relaxation femtoseconde des électrons dans les semiconducteurs en régime non-markovien

    No full text
    Le travail présenté ici porte sur la relaxation des électrons dans les semiconducteurs et plus particulièrement dans l'arséniure de gallium. L'approche est à la fois expérimentale (lasers femtosecondes) et théorique (équations de Bloch pour semiconducteurs et cinétique quantique). Il nous renseigne sur les processus fondamentaux, notamment les collisions, qui permettent aux électrons de changer d'énergie et déterminent la rapidité des dispositifs électroniques ou optoélectroniques. 
L'étude repose sur l'utilisation de lasers à impulsions femtosecondes et sur une méthode pompe-sonde originale car non-dégénérée : l'impulsion pompe injecte des électrons et des trous en un temps très bref, tandis que l'impulsion sonde est accordée sur une autre transition utilisant une bande de valence plus profonde car découplée par l'interaction spin-orbite. Il est ainsi possible de suivre, avec une résolution temporelle de 30 fs, l'évolution de la distribution des électrons, et des électrons seulement, sans la superposer à celle des trous. 
On observe pour la première fois les tout premiers instants de la relaxation des électrons pour lesquels la distribution est encore complètement hors d'équilibre, jusqu'à la thermalisation qui se fait très rapidement, en moins de 300 fs. En parallèle, l'étude théorique montre la nécessité d'une description non-markovienne des processus (c'est-à-dire tenant compte du passé des distributions) que l'on prend en compte avec la théorie de la cinétique quantique utilisée dans le cadre des équations de Bloch pour semiconducteurs. L'équation de Boltzmann et la règle d'or de Fermi ne sont en effet plus valables pour des échelles de temps aussi courtes. L'accord théorie-expérience est d'autant plus remarquable qu'aucun paramètre ajustable n'a été requis. 
L'influence de plusieurs paramètres expérimentaux a aussi été étudiée : une forte densité de porteurs injectés ralentit la relaxation, alors que la présence initiale de porteurs froids l'accélère fortement. L'excès d'énergie initial donné aux électrons est en revanche de peu d'influence. Nous avons aussi adapté notre méthode à l'étude de la relaxation dans les structures à puits quantiques et nous en présentons les premiers résultats

    Etude femtoseconde de la relaxation des électrons dans les semiconducteurs en régime non-markovien

    No full text
    This work deals with the electron relaxation in semiconductors and, in particular, in gallium arsenide. The approach is experimental (femtosecond lasers) as well as theoretical (semiconductor Bloch equations and quantum kinetics). It provides new information on the fundamental processes, like carrier scattering, which cause a change of the electron energy and which are important for the functioning of electronic or optoelectronic devices. The study is based on the use of femtosecond lasers and on an original nondegenerate pump-probe technique : the pump pulse injects electrons and holes in a very short time, while the probe pulse is tuned to another higher-lying transition using the spin-orbit split-off valence band. This enables us to follow selectively with a 30-fs resolution the evolution of the electron distribution without superimposing the hole distribution to the signal. The very first instants of the electron relaxation were observed, during the injection, when the distribution is still completely out of equilibrium, until a thermalized distribution is reached (in less than 300 fs). The theoretical study shows the need of a non-markovian description of the processes. In order to take into account memory effects, quantum kinetics is used in the framework of the semiconductor Bloch equations. The Boltzmann equation and Fermi's golden rule are in fact not applicable in this case. The agreement between theory and experiment is all the more remarkable since no adjustable parameter was required. The influence of several parameters was also studied: a high carrier density slows down the relaxation, while the initial presence of cold carriers dramatically accelerates it. The initial excess energy seems on the other hand to be of less importance. The method has been also adapted to the study of the relaxation in quantum wells and the first results are presented.Le travail présenté ici porte sur la relaxation des électrons dans les semiconducteurs et plus particulièrement dans l'arséniure de gallium. L'approche est à la fois expérimentale (lasers femtosecondes) et théorique (équations de Bloch pour semiconducteurs et cinétique quantique). Il nous renseigne sur les processus fondamentaux, notamment les collisions, qui permettent aux électrons de changer d'énergie et déterminent la rapidité des dispositifs électroniques ou optoélectroniques. L'étude repose sur l'utilisation de lasers à impulsions femtosecondes et sur une méthode pompe-sonde originale car non-dégénérée : l'impulsion pompe injecte des électrons et des trous en un temps très bref, tandis que l'impulsion sonde est accordée sur une autre transition utilisant une bande de valence plus profonde car découplée par l'interaction spin-orbite. Il est ainsi possible de suivre, avec une résolution temporelle de 30 fs, l'évolution de la distribution des électrons, et des électrons seulement, sans la superposer à celle des trous. On observe pour la première fois les tout premiers instants de la relaxation des électrons pour lesquels la distribution est encore complètement hors d'équilibre, jusqu'à la thermalisation qui se fait très rapidement, en moins de 300 fs. En parallèle, l'étude théorique montre la nécessité d'une description non-markovienne des processus (c'est-à-dire tenant compte du passé des distributions) que l'on prend en compte avec la théorie de la cinétique quantique utilisée dans le cadre des équations de Bloch pour semiconducteurs. L'équation de Boltzmann et la règle d'or de Fermi ne sont en effet plus valables pour des échelles de temps aussi courtes. L'accord théorie-expérience est d'autant plus remarquable qu'aucun paramètre ajustable n'a été requis. L'influence de plusieurs paramètres expérimentaux a aussi été étudiée : une forte densité de porteurs injectés ralentit la relaxation, alors que la présence initiale de porteurs froids l'accélère fortement. L'excès d'énergie initial donné aux électrons est en revanche de peu d'influence. Nous avons aussi adapté notre méthode à l'étude de la relaxation dans les structures à puits quantiques et nous en présentons les premiers résultats
    corecore