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Relaxation of a kinetic hole due to carrier-carrier scattering in multisubband
single-quantum-well semiconductors

H. Dery}* B. Tromborg? and G. Eisenstein
!Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
Research Center COM, Technical University of Denmark, Building 345V, DK-2800 Lyngby, Denmark
(Received 28 November 2002; revised manuscript received 31 March 2003; published 12 June 2003

We describe a theoretical model for carrier-carrier scattering in an inverted semiconductor quantum well
structure using a multisubband diagram. The model includes all possible nonvanishing interaction terms within
the static screening approximation, and it enables one to calculate accurately the temporal evolution of the
carrier densities and the gain following a perturbation by a short optical pulse. We present a theoretical
formalism and detailed numerical calculations. The addition of more than one subband in each band as well as
the use of all exchange terms yields several results. First, the degree of gain saturation is reduced while, at the
same time, the recovery is faster as scattering events among different subbands take place. Also, carrier transfer
between subbands is observed which modifies the overall carrier dynamics.

DOI: 10.1103/PhysRevB.67.245308 PACS nunfer73.63.Hs, 85.35.Be, 42.55.Px

[. INTRODUCTION clearly leads to a more accurate description of this widely
researched problem and, at the same time, the moderation of
The ultrafast carrier dynamics in inverted semiconductorghe role played by spectral hole burning has an important
has long been a research topic with implications in applied apractical impact on the gain nonlinearity of quantum well
well as basic semiconductor physics. Carrier dynamics i$§QW) lasers and amplifiers and hence on their modulation
commonly investigated by assuming an inverted semicon@nd switching capabilities.
ductor quantum structure gain medium driven at high carrier Screening in a multisubband system is difficult to treat,
densities(typical of lasers and optical amplifiersvhich is ~ Sinceé the random phase approximatiG®PA) results in a
perturbed by a short optical pulse which causes a spectr9|'9|eCtr'C matrix which must be inverted to calculate the

hole. Dynamical details are studied then by calculating thicreeneddp;)r;[er}tiﬁlRa}ther thandfolloleéing thi‘; methg;pl, W? f
evolution of this kinetic hole. Two main theoretical ap- ave use € following procedure. or each specilic Set 0

proaches applicable far from equilibrium are commonIySUbbandS’ we intreduced the Yukawa potenfiahg wave-

used. The first is the nonequilibrium Green’s function theor length static limi} with the inverse screening length corre-
o neq ) ) ysponding to a two-dimensiong&2D) gas with an equivalent
using for example the time-loa®-matrix method—* and the

second is the density matrix theghy density. This procedure is similar to the one described by

, _ , Goodnick and Luglt® The simulations assume initial qua-
This paper extends ultrafast carrier dynamics model§iihermal equilibrium followed by a perturbing pulse which

which address the sub-1-ps time scale where carrier-carrigbmoyes less than 10% of the carriers. Under those condi-
(c-¢) scattering is the dominant mechanism. We analyze §ons, we assume that the deviation from the static limit due
separate confinement heterostruct¢®&CH) quantum well g dynamical screening is not important.

with multiple parabolic subbands in each band using the den- The general formalism we present is more elaborate than
sity matrix formalism while considering all possible nonva- most of the numerous publications in the field. Before it is
nishing Coulomb scattering events within the multiple- described and solved, we review briefly the relevant litera-
subband system. A schematic description of some of theure. Early numerical results for c-c in a highly excited semi-
and electron-hole scattering is shown in Fig. 1.

The new general coupled equation model is accompanied
by extensive numerical calculations which shed light on is- .
netic hole recovery is measurably faster in the multisubband
case when compared to the conventional single-subband for- diagonal Non-diagonal
malism. Moreover, the degree of phase filling factor satura-
in the multisubband case, as is the maximum absolute value
of the polarization. Both these effects stem from Coulomb
c-C scattering events involving the second subband. The cal-
distribution which clearly shows its contribution to the over- band system. Left: three examples of diagonal scattering where car-
all recovery. The results obtained from the calculations areiers are scattered within subbands. Right: two examples of nondi-
important in two ways. The addition of a second subbanchgonal scattering where carriers change subband.

scattering possibilities including electron-electron, hole-holeconductor are found in the work of Bindet al!! This cal-
sues not previously observed. We demonstrate that the ki-

tion (which is directly related to gain saturatiois reduced

culation also yield the time evolution of the second subband F|G. 1. Schematic diagrams of direct scattering in a multisub-
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culation starts from perturbed electron and hole plasma in a-gh, with z taken to be the growtliconfined direction.

bulk semiconductor optical amplifier and yields the evolutiongefore the optical pulse perturbs the system, we assume the
of both plasma with the screening treated in the dynamicakystem to be in quasithermal equilibrium where the popula-
RPA model. The polarization determines the initial perturbayjons of electrons and holes are the Fermi-Dirac distributions.
tion but is not otherwise included in the equations. In Ref. 11The subsequent dynamics are given by rate equations for the

the_ authors discuss the re_Iaxatlon time approxma(ﬂib‘_m), carrier number expectation values, k:<a; \ae ) and
which makes the calculations far simpler and yet quite accu- o it
rate for the case of small deviations from equilibrium. Nh, k= (P, P, —) @nd for the dipole expectation value
Derivation of the semiconductor Bloch equatid&BE’S) Pe, h, ,k=(bhi —kae, K- Hereaei « and a; « are the annihi-
which are the basis for all relevant solutions, is detailed ination and creation operators of a conduction electron in a
Ref. 5 for bulk structures using the density matrix formalism,state given by ¢ ,k), andby, , andb] , are similarly the
and an analogous derivation with the nonequilibrium Green’s, .. .. . . ' ' .
functions is oi in Ref. 3. The SBE of ltidi : Ianmhllatlon and creation operators of.a valence hole in a
given in Re he o a muitidimensiona tate f;,k). In the following we shall simply refer to
nanostructure is described in Ref. 8, and simulations of thé b i .g . Py "6k
electron hole generation rate for bulk semiconductors unde®"dNn, k s subband distributions andpg ., « as an inter-
the influence of c-c and carrier-phonon scattering within thesubband polarization.
static screening limit are given in Ref. 7. The effects of Cou- The intersubband polarizations of the kinldei €k
|0m_g ZC.attSfifnglyatfig eIemer|1ts in quantum wells are de=(al ,a, ) are assumed to vanish if there is no driving
scribed in Ref. 12, and an analog situation in quantum wire U S
is presented in Ref. 13. The microscopic theory of VCSEL’S?OrceT term in the system Hamiltonian. .We also hane,.p
was studied in Ref. 14 using Green function formalism with = (e, k8e ,p) = Ne, .k,p due to translational symmetry for
only the first subband at each band being considered. A fulihe free directions.
density matrix formalism for a dynamically screened poten- In the following, we will assume that intersubband polar-
tial in a three-dimensional electron gas is presented by Wyldzations are dominated by the first transititthat is, the op-
and Fried while the general single-particle effective Hamil- tical pulse transition frequency is resonant only for transi-
tonian formalism is found in Ref. 15. A study of c-c scatter-tions between the first conduction and first valence subbands,
ing within the static screening limit along with the polariza- which is a very good approximation for quantum wgllEhe
tion at highly excited bulk semiconductors, where the opticakate equations for the carrier distributions and polarizations
pulse evolution is derived dynamically, is presented in Refare derived from the operator equations of motion in the
16. The non-Markovian limit which includes energy-time un- Heisenberg picture. They comprise two parts: denoted coher-
certainty and memory effects is described by Ref. 13 in a&nt and collisional. The details of the coherent part are dic-
guantum wire model. A different point of view on c-c scat- tated by the noninteracting Hamiltonian, the radiation-matter
tering in cases of optical excitation of moderate carrier deninteraction(optical puls¢, and by the lowest-order contribu-
sities is given in Ref. 17 and in recent publicatidAs?® tion due to the c-c Coulomb interaction which causes band-
where the screening is built self-consistently throughout thegyap energy and Rabi frequency renormalizations. It also
propagation of a pulse by applying the Green formalism forgives rise to excitonic effects but these are neglected in the

the screened Coulomb potential. regime of very high carrier densities. For the radiation-matter
This paper is organized as follows. In the next section wenteraction we consider only induced transitions so that spon-
outline the general formalism approach. In Sec. Ill wetaneous emission is neglected. The collisional part of the

present the theoretical approach based on the density matréquations is governed by higher-order contributions of the
theory, along with mathematical aspects of the SBE. In Sea-c Coulomb interaction which give rise to relaxation pro-
IV we present simulation results of the SBE’s, and the concesses that drive the particle population towards thermal
clusions are given in Sec. V. Appendix A contains a deriva-equilibrium. Such relaxation processé&sc scattering are

tion of the Coulomb matrix elements in SCH based on thedivided into particle-conserving processes such as intrasub-
k-p model; also presented are results on the bare and of tHgand thermalization and intraband impact ionization and to
static screened Coulomb potential. Appendix B elaborates onon-particle-conserving processes caused by Coulomb
the details of the SBE derivation in the density matrix for--nduced transitions such as Auger recombination and inter-
malism. Appendix C handles the scattering rate equationband impact ionization. The nonconserving processes can be
and elaborates on mathematical-related issues concerning dieglected due to their small effect in the time scales where
agonal and nondiagonal scattering as well as direct versufe particle conservation processes make considerable

exchange scattering. changes in the plasma. The most general formalism takes the
form
Il. GENERAL FORMALISM d d
S . . T Nap=7F;Naplcont 37 Napl ey
In order to formulate a model which is applicable to semi- dt P dt « dt ",

conductor quantum wells, we use a general notation where

and k represent the free-dimension space vector and the d d d

single-particle wave vector, respectively. The confined states GiPr=giPocon® giPol - 2

are localized and are denoted by subband indewhere\ col

245308-2
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and is also suitable when the Green function notation is emC€oulomb interaction terms is calculated in the SQ represen-
ployed. The explicit form is the SBE set. In the model wetation using standard techniques:
present, these equations have a similar form to those given in
Ref. 8 except that it includes exchange scattering processes H=Hp+Hagmart He
in the collisional part and it neglects all intrasubband polar-
izations as well as contributions to interband polarization
from other than the first transition. Hy = GE (e ,ka; ekt En kagi LT R
I A1

Ill. THEORETICAL MODEL

In the following analysis, we use the density matrix ap- H =— > [E(t)- mal bl

: o - Mm@ -
proach along with the second-quantizatbtSQ) represen- rad-mat K Koy Ky K
tation (Fock representationThe system Hamiltonian which

*
includes noninteracting, radiation-matter interaction and +E (1) pycbn, —k@e, k], @
A T T
HC: 2 |:_ / 2 Vq(ei ’hl ,hJ ,ei)aei, ,k+th.' ,k’fthj ’kraei Kk
k.k,q el hihj e !
1 , , t + ’ ’ t f
i Z Vo(€f 6] €188 . @er i —qBe, kBe kt E Va(h Ry shyhby o obpr ooy By i |
el ,ei ,ei ,e| h| ’hj ,h] ,h| J
(5
|
where &\, k denotes the single-particle energy in the state E(t)-pp 1
(i ,k), E(t) is the electric field of the optical pulse, apg b’ h g % Vq(er.hi;hie)ppeq, (10

is the dipole matrix element/y(\; ,\j;\;,\y,) denotes the

bare Coulomb matrix element, describing the c-c scatteringvherew,, and{}, denote, respectively, the first-order renor-

process of two particles from subbansg,\, to subband malized transition and Rabi frequencies where nondiagonal

\i,\j, with g transferred momentum. Functional derivation Coulomb contributions to the renormalized frequencies were

and discussion of the bare and static screened Coulomb maeglected due to their relative small effect compared with the

trix elements in heterostructures is given in Appendix A.  diagonal contributions. Equatiori§)—(10) are the SBE’s for

the interacting particles model. Taking the Coulomb terms
A. Semiconductor Bloch equations Vq(- - -) to be zero gives the SBE's in the free-carrier model.
A detailed derivation of the SBE’s in nanostructures under 1he collisional contribution is

our approximations is given in Appendix B. A compact for-

mulation of the results comprises three rate equations: two En o= (TN $ AIN@Y (1 )

for the electron and hole distributions in a specific subband dt @i-picol @i Taip %P

and one for the interband polarizations induced by the optical

transitions,p,= Pe, h, k

d d g + (APt C.C) 8y o (11)
mneivp:mneiyp|00|+l[ﬂppp_ﬂp pp]aei,eln (6)

— (T + AN,

d . :
d d i _pp|coI:2 [_(rlo? ,p+rzufp)pp+A$Y%)(l_na ,p)
anhi’p:&nhi,p|co,+|[Qpp;—Q;pp]5hi’hl, 7) dt o 1 1 1 1
AN, o+ AR pp+ AL ], (12

d d

atPe gt Peleor T @pPp I 1=nn, o= . B) e e superscripts in the brackets of the ratesnd A
refer to the polarization power. For relatively weak optical

o= (60 oten ) pulses the terms involving @, A A®) and A®) are
P Terpl Thip negligible (these involve the square- and third-power polar-
ization), and the equations become the well-known Boltz-
. mann equations for c-c scattering. In all rate terms, exchange
% Va(erhiihe ) (Me, prqt Moy pra)s  (9) contribucéions are considered. Tr?e sum refers to summatign
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over first conduction and first valence subbands; (
=e;,h;) (dominant transition The explicit form of these
rates is given in Appendix C. Figure 1 displays the direct
scattering terms of th€ rates.

B. Numerical aspects

In addition to a detailed physical formalism, the results

we present below involve considerable computational com-

plexities. All computer programs used to solve the SBE's
were written in C++ and can be described as CPU

bounded. A memory-bound program would have consumed

memory over and above the RAM limit, which would have
caused a bottleneck due to frequent disk access. The calc

PHYSICAL REVIEW B7, 245308 (2003

08

06

04

distribution

u- 0

2

1

lations were performed using the Origin 2001 at the HPCU

center in Tel-Aviv. The simulations used 32 dedicated paral-

FIG. 2. Evolution of the first conduction-confined subband dis-

lel SGI CPU's, each operating at 500 MHz and having atribution. Upper solid line denotes the initial distribution~ fs
memory size beyond the program needs. A typical simulatiorpefore the arrival of the pulse peak. Upper dashed line denotes the
ran for 12 days. For illustration, these simulations would rundistribution at—40 fs, lower solid line+80 fs at which the plasma

on a single modern PC for approximately 1 year.
The SBE'’s given by Eq€6)—(12) were solved for a typi-
cal SCH QW laser amplifier with the following parameters.

is the most perturbed, lower dashed liti@50 fs, and middle solid
line +1.2 ps.

The total width of the heterostructure was 985 A, CompriSin%aratﬂe with those Originating from c-c Scattering in

a single I ,Gay;As 85-A-wide well with 100-A GaAs

multiple-quantum-well (MQW) structures with relatively

barriers on each side. The rest of the structure compris&sarrow wells(~50 A).?>~2" These calculations do not con-
Alg 1653 gAs on both sides. The temperature was fixed alsider screening, however, which tends to decrease the scat-

300 K and strain effects were included. TRek diagrams

tering rates.

and the confined wave functions where computed following The heterostructure we consider comprises a single 85-A

Ref. 22. The particle masses at thegoint (k=0) and Cou-
lomb matrix elements were extracted from these data.

quantum well whose hole wave functioffirst and second
subbang and electron wave functiortfirst subbangl are

mainly localized at the well center. This results in a poor

Me;=0.0am,, my;=0.055n,, overlap of carrier and IP envelope functions, which in turn
reduces the rate. Intrasubband scattering rates due to IP’s at
the second conduction subband may be comparable with the

Me;=0.033ny, mM;y,=0.06mg, c-c time constants under consideration. However, the finite

confinement of electrons in the well, which in the present

Ey—En=12312 eV, En,—E;,=0.0379 eV case is of the order of 100 meV, reduces the rate of the latter.
(S . i . )

E.,—Eo;=0.0709 eV,

where all of the energies were computed atlhpoint. The
medium was excited by a 75-fs Gaussian-shaped optical
pulse (the unnormalized Rabi frequency at the peak of the
pulseEq- m /7 was approximately 78102 Hz). The fre-
quency of the field was chosen to coincide with the gain
region of the first transitioe,-h;. The amplifier is assumed

to be thin; namely, we do not consider pulse propagation
effects or any distributed nonlinearities. All simulations con-
sider a parabolic band structure.

Any nonparabolic character of the valence subbands in-
troduces some changes to the relaxation rates, due to differ-
ences in the density of states. These effects are considered in
a separate papétThe qualitative impact of c-c scatteringin - FiG. 3. Evolution of the first valence-confined subband distri-
multisubband structures as treated in this paper remaingytion. Upper solid line denotes the initial distributiere fs before
however, unchanged even in the cases where the density fife arrival of the pulse peak. Upper dashed line denotes the distri-
states is modified. bution at—40 fs, lower solid line+80 fs at which the plasma is the

The calculations we present disregarded interfacenost perturbed, lower dashed liRe250 fs, and middle solid line
phononé* whose scattering rates may, in principle, be com-+1.2 ps.

distribution

2 3

1

0
0
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071
Fe2 -
Phase Filling Factor
0.5-
- ‘-.1 05
=} =
E =
E 0.3f t
B =%
o
01
108 cm~1 01t
[ ] [fs]
; 1' ; 3 : ;K 0 . . . . .
0 300 600 900 1200 1500

FIG. 4. Evolution of the second conduction-confined subband
distribution. Upper solid line denotes the initial distributiere fs
before the arrival of the pulse peak. Dashed line denotes the distr

bution at+250 fs, lower solid linet+1.2 ps. IV. RESULTS AND DISCUSSION

FIG. 6. Phase filling factor at the momentum region where the
plasma is most perturbed.

Intersubband transition ratéanalog to nondiagonal scatter- ea;;r#eoIOtILogvmgbgglrJ]:jesd _5?(_)[‘3"’ t(?gLCUIz[Sgotri(;nﬁ e){’g"é[g;rls of
ing) caused by IP’'s are negligible in single-quantum-well X su Istributions, raing e
9 y g19 g'eq (12). Figures 2 and 3 describe the behavior of the first sub-

structures. band in the conduction and valence band tively. Each
Our first set of simulations considered multisubband para-.an In the conduction and valence bands, respectively. =ac
) ) : o ) figure comprises five curves describing the distributions at
bolic energy—wave-vector dispersion. At “infinite time,” be-

) L times the following:—oo fs, upper solid line;—40 fs, upper
fore the arrival of the pulse peak, the polarization inside the ashed line: 80 fsglower soligpl)ine' 250 fs. lower dashpepd line:
medium is assumed to be zero throughout and the initial | 1 ps 'middl,e solid line. The refere’nce titweo fs is
subband distributions are quasithermal Fermi-Dirac distribuzayan at the peak of the arri\./ing pulse. Figures 4 and 5 are
tions within the bands. At 300 }é anquor an exemplary totalgimijar but address the evolution of the second subband of
carrier density 0fNpq~1.3x10' cm™2, we extracted the each band, which in the present model are assumed not to
chemical potential at each band and ct:]alculated the varioysarticipate in the optical transition. The distributions of these
densities which areN;j%O.?G\IZd, N,g~0.Mq, Ngfj subbands are denoted by three curves which refer the follow-
~0.24N,y, and N2§~0.3\12d. The densities of higher sub- iNg: to —= fs, upper solid line; 250 fs, dashed line; 1.2 ps,

bands €53, hs, ...) were found to be negligible. lower solid line.

The second set of simulations considered only one sub- The Interaction with the opt|cal pulse removes carriers
from the gain region at energies below the average particle

band vy|th|n ea.c.h bandeelmd uhsie the samezparair?eters as bGf%rneergy in the plasma. Hence, the plasma heats and gain

only with densities O, =N,5=Nog=10'% cm ™2, phase filling factor e, i+ np, x—1) do not relax into their
initial condition but rather into a new, lower value which
decreases the gain. Figure 6 describes the phase filling factor

Fh2

0.4f 1 Ne,(t) / Ne,(0)
_5 0.999}
=
=}
o
'_E 0.2F
R 0.998f
T

[10°cm™"] 0.997}

I S S [fs]

FIG. 5. Evolution of the second valence-confined subband dis- 0-9960 200 460 660 860 10'00 1200 1 4'00

tribution. Upper solid line denotes the initial distributioree fs
before the arrival of the pulse peak. Dashed line denotes the distri- FIG. 7. Normalized total density at the second conduction-

bution at+250 fs, lower solid linet+1.2 ps. confined subband.
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Phase Filling Factor

0.9F
0.6

0.71

0.5f

distribution

0.3r

[10% cm™1]

[fs]

0.1

0 1 2 3 4 5 k 00, 500 1000 1500

FIG. 8. Evolution of the first conduction-confined subband dis- FIG. 10. Phase filling factor at the momentum region where
tribution. Upper solid line denotes the initial distribution fs  the plasma is most perturbed in the simulation without the second
before the arrival of the pulse peak. Upper dashed line denotes thg,phband.
distribution at—40 fs, lower solid line+80 fs at which the plasma
is the most perturbed, lower dashed li@50 fs, and middle solid

line +1.2 ps. . .
turbation due to the optical pulse has a stronger effect than

the c-c scattering process, the distribution remains approxi-
at the momentum region where the plasma is most perturbetiately constant. At later times, when the c-c scattering pro-
(at this figure thee=0 fs refers to—150 fs before the peak cess mediates the transfer of particles to the first subband, the
arrival). The increase shown in the figure means that 80 fsiormalized distribution naturally decreases monotonically.
after the peak of the pulse, the effect of the c-c scatteringhis decrease can be approximated in the RTANag(t)
mechanism already dominates over the effect of the tail of. Ne,(0)exp(~t/7), where =300 ps.
the optical pulge anfl causfes ';he prf:aselfllllng fECtﬁr tohln- The calculation shows that the process transfers 0.4% of
ey o o oot i s second subband popuaion o he st susband i
which continues due to thermalization processes as well asl'2 ps after the pulse peak. For comparison, in the mpst
transfer of particles from the second subbands at each bargzerturbed case, _the opt_|cal pulse removes 7'5.% of the first

bband population. Using the RTA as before, it would take

to the first. After a significantly longer time, on the order of . L . ;
a few ps, all of the subbands reach new quasi-Fermi-DiragggE;ﬁg ps to replenish the original population of the first

d_istributions at the same temperature. Figure 7 describes_the In order to further highlight the significance of including
time dependence of the distribution in the second conducuoH10re than one subband in the calculation, we recalculated

subband normalized to its initial value. As long as the Perine response of the same SCH QW medium with identical

physical parameters T(=300 K, N3i= Ngéz 102 cm 2,

mel=0.03’n0, mh1=0.055m0, Eel_Ehl:1'2312 e\),

0.8== . . .
except that only a single subband was included in each
band.

c 08F
._g TABLE I. Final distributions(at 1.2 ps) of Figs. 2-5, 8, and 9
3 approximated as Fermi-Dirac distributions. The chemical potential
Soar and temperatures differences between these distributions and of
% their respective initial distributions are given.
02 Subband Au (meV) AT (K)
[108 cm™] e, -71 40
a —
0 | \ . . " k hy 6.8 40
0 1 2 3 4 5 ] eza -23 20
FIG. 9. Evolution of the first valence-confined subband distri-h2* —51 37
bution. Upper solid line denotes the initial distributiene fs before  e,” -8 50
the arrival of the pulse peak. Upper dashed line denotes the distrjy,” —7.4 53
bution at—40 fs, lower solid line+80 fs at which the plasma is the
most perturbed, lower dashed line250 fs, and middle solid line  *Multisubband simulation.
+1.2 ps. bSingle subband was included in each band.
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Figures 8 and 9 exhibit similar curves as in Figs. 2 and 3.
Comparing the the lower dashed lines which denote the =)
subband distribution 250 fs after the arrival of the pulse 03 JEN | k0|
peak, it is obvious that including the second subband in g .
the calculations yields a significantly faster recovery of the
kinetic hole.

Comparing the phase filling factors, Figs. 6 and 10 show
two clear differences. First, the minimum value reached due
to saturation in the multisubband model is higher than the .l
transparency poinfwhere the induced emission and absorp- 01
tion are equal while in the single-subband model, the satu-
ration is sufficiently large to reach the transparency point. [fs]
Second, the recovery of the phase filling factor is faster in the ‘ . .
multisubband model as can be deduced by observation of the % 200 400 600

shape of thel respective c.:urve§. o ) FIG. 11. The absolute value of the polarization vs time. The
By assuming that the final distributioiat 1.2 pg of Figs.  pojarization considered here is extracted from the momentum re-

2-5, 8, and 9 are given by Fermi-Dirac distributions we haveyion where the plasma is most perturbed. The lower solid line de-

extracted the chemical potential and temperature of each suhetes the multisubband case whereas the upper dashed line denotes

band out of the first and third wave-vector momefaisrre-  the nonmultisubband case.

spond for the total density and energy of each subpaltte

0.2

polarization

fitting between the approximated Fermi-Dirac distributions dnal,k . out

and the final distributions was excellent. The chemical po- gt et =Ty k(17 Nay 1) =T iNe, ko (139
tential and temperature differences between the initial distri-

butions (at t=—« ps) and the extrapolated final distribu- dp,

tions are given in Table I. As can be seen from the table, chm:—vkpk, (13b
the perturbed subband®,( and h;) of the multisubband

simulation reach a lower temperature than in the second Yk:Fierl,kJFFgf,thfrihnl,k”LFﬂf,tk: (130

simulation where only one subband at each band was con-
sidered(340 K versus 350 K the respective chemical po- where thel” are the same as in Appendix C. The dephasing,
tentials are also less perturbed. An additional interesting feawhich is responsible for the decay of the polarization as well
ture is that due to the fact that in this specific considereds for its suppression during the polarization buildup, is
example the diagonal Coulomb matrix element of the seconglearly stronger in the multisubband case which implies that
conduction subband is relatively weaker than the other subts I rates are stronger, where these terms are directly caused
band diagonal elementsee Appendix A the e, subband bPY the c-c Coulomb scattering.
was less perturbed than the other subbands, which can be
seen from the smaller deviation of the chemical potential and V. CONCLUSIONS
temperature. We have not taken carrier-phonon interactions s paper described a detailed calculation of the c-c scat-
into account, which would have relaxed the carrier temperagering contribution to a spectral hole recovery in a room-
ture to the lattice temperature within a relaxation time of thetemperature inverted QW gain medium under the parabolic
order 0.6 ps. band assumption and using the density matrix formalism.
One more aspect of the improvement gained in calculatThe calculations were performed for the high-injection re-
ing the recovery of a spectral hole with the multisubbandgime typical of semiconductor optical amplifiers. The main
formalism is shown in Fig. 11. The figure compares the timecontribution of this paper is the inclusion of two subbands in
evolution of the absolute value of the polarization at theeach band while maintaining all exchange terms. A general
momentum region where the plasma is most perturbed caformalism and the results of elaborate numerical calculations
culated with one and with two subbands. The dashed lindave been presented. The addition of a second subband in
which denotes the single-subband case, reaches higher valRach band has a significant influence on several aspects.
than the corresponding multisubband case. Coulomb scattefi'St, the recovery of the kinetic hole is measurably faster in

ing which involves higher subbands adds a contribution tgh® multisubband case when compared to the conventional

the thermalization of the first subbands moderating the inSingle-subband formalism. Moreover, following a perturbing

crease in the value of the polarization. Consequently, th?
dephasing is stronger. !

ptical pulse in the multisubband case, the degree of satura-
on of the phase filling factofwhich is directly related to the
Y ' ) ) gain) is reduced as is the maximum absolute value of the
~ Considering a simple phenomenological model withoutsg|arization, both due to Coulomb c-c scattering events in-
high-order polarization terms in the collisional part and po-oying the second subband. The calculation also yields the
larization transfer of linear terms, the polarization dephasingime evolution of the second subband distribution which
is given by® clearly shows its contribution to the overall recovery. The
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results obtained from the calculations serve two purposes. I=+J _
Including the second subband clearly leads to a more accu- Hm(2)=—— >, Frm(h)el@m/az, (A3)
rate description of this widely researched problem and, at the ' VL, 152

same time, the moderation of the role played by spectral hole
burning has an important practical impact on the gain non-
linearity of QW lasers and amplifiers and hence on their

modulation and switching capabilities. Here L, denotes the width of the separate confinement
heterostructure, taken to be sufficiently wide to include
ACKNOWLEDGMENTS the tails of bound wave functions. Despite the fact that

_ _ _ each wave function is governed by projections of all eight
H.D. acknowledges financial support of Levi Eshkol andBloch wave functiongvalence and conductipnve label the
Vatat graduate student grants. The authors thank Professgir(hj) if the energy state is abov@elow) the conduction

Amiram Ron for many useful discussions. (valence edge.
In order to calculate the Coulomb matrix elements we
APPENDIX A: COULOMB SCATTERING have used the following approximations. First, the Coulomb

In the SQ representation, the wave functions are rep|‘,cheeotential will have the same functional form throughout the
by field creation and annihillation operatoks (r) andW(r). heterostructure, even thought the dielectric constant varies

Using the mode representation in the electron-hole picturd/oM one region of the structure to another. This assumption
the annihilation operator can be written as is based on the fact that the variations of the dielectric

constant are quite smalile., | €1 — €pa| < €p1,€42). Second,
the k dependence of the confined part of the envelope
(rt)= > ‘Dei,k(ru,Z)aei,k(t)+q’h.,k(rH,Z)bE.,k(t), ﬁfn(z) in the wave function is considered to be weak
& .hj .k : : and can therefore be neglected. This assumption simpli-
(A1) fies the algebra a great deal; we shall use the simpler notation
¢M|(z)z¢ﬁ"n(z). Third, thek dependence of the Bloch part

Uy,n(ry,2) in the wave function is considered to be weak in

the zone center region; therefore, the Bloch functions are
1 S ekengh A2 calculated at th& point (k=0). Fourth, except for the Bloch
NN el n(DUin(r).- (A2) part in the wave function, the other parts are considered to be

constant within the regions of a unit cell, and therefore the
Heren denotes the band indew, »(r) is the lattice periodic integration will be m_ade in two steps: first integration over
Bloch function of banch, ¢, (z) denotes the confined part ]Ehe volume of a unit cell which involves only the Bloch
of the envelope function, and is the area of the quantum unctions and then throughou_t the entlrg volume with the
well. Calculations of the single-particle noninteractiBgk othe'r parts of the wave functions. Applying Fhe above ap-
dispersion curve, as well as the confined part of the envelopBroXimations we can calculate Coulomb matrix elements by
function, were made by following thie-p method of Gers-  S0lving the integral in EqiA4). Going to the right-hand side
honi et al?2 They used eight zone center Bloch waves(RHS of Eq.(A4) requires thei substitution of variables and
(SUY XYY INIZIY,ISTYIXTY.IYTY,|Z1)) with the con-  Bessel function identitiess=|k,—kj|=|k,—Kkj| , and & is
fined part of the envelope given as the Kronecker delta function:

where the general form of the wave function is given by

D), k(r),2)=

o e’ L, (L, , 1
Ve Midad)= 3 —— [ Pdadz [ [ dpat7p——— :
niny Ae,/0 JO \/(PZ_Pl) +(2,—29)

X ej[(k1-917kl'Pl)Jr(kz-Pz*kz-PZ)] ¢:1 A (Zl) anl')\m(Zl) ¢:2 '}‘|/(ZZ) ¢n2'}\l(22)

’
m

2me? s sz ol [ . z
=8k ik Rk —— dze f dz N\ zy—=
kitko kgt epAQ nin, J-L, |22 +¢nl’)\m T2 Prahn
4 * V4 Z
X Z+_£ ¢n2’)\|/ Z++§ bn, Z++§ ) (A4)
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Py (10Fh o (1D)Fn, n (1)Fn, 0 (J2)

e 5 7A\?
1 1-e |97\
) wA\? qlL, ) wA\2]%’ T
L i
X ‘ ‘ (A5)
) A \2 [7A\?2
1—e 9k SR T B e
_ AL #0,
qlL, 5 7TA+)2 <7TA 212 Zqu)z’ i
+ —|— | +
L, L, L,

whereA=j,+j;—ji—jsandA,=j,—j;+j.—j,. HereV

Assuming inversion symmetry for our example the only

is the volume of integration. It can be seen from the abovenonvanishing Coulomb terms are diagonal elements of the

equation that the following identities are valid:
V(N N NN = V(NN NN =V (0NN )
=VG (] AGN N, (AB)

Replacing the bare Coulomb potentifb(r)=e?/ eg|r|]
in Eqg. (A4) with the Yukawa potential [vg(r)
=(e2/eb|r|)e*"|r‘] where k denotes the inverse screening

form V(aj,aj;aj,a)) or V(e;,Bj:8),a;) where {«a,B}
={e,h} or{h,e}, nondiagonal elements which involve scat-
tering within the same band such &«;,a;;«a;,q;) or
V(aj,aj;ai,a;), with a={e,h} andi#j, and also non-
diagonal elements which involve scattering of electrons and
holes such a¥(«;,Bm;Bn, ;) with {a,8}={e,h} or {h,e}

and where both #) and m#n are satisfied. Terms of the
kind V(e ,a;;a;,am) or V(a;,Bm:Bm. ) are negligible:®

length yields nonanalytical results. Further discussion of the pe to the geometry of our example and its physical pa-
derivation of this potential in the Thomas-Fermi screening,; eters. the confined part of the envelope functi@®) of

model or in the static limit of the RPA or PRflasmon pole
approximation for cases of 2D and 3D is given in Ref. 28.

For the example introduced at the beginning of Sec. Il B w
have calculated the bare Coulomb matrix elements from th
analytic expressiorfA5), and the static screened elements

were numerically computed via EqA4) including the
screening factor eXp-«|r|) in the integrand.

Bare potential

10° 10° 10*

the first two valence subbands as well as the first conduction
band are strongly confined to the well region. We can there-

Sore expect that Coulomb matrix elements for scattering be-

een particles in these bands will be closer to the case of
pure 2D scattering than matrix elements for scattering that
involves the second conduction band. This is confirmed by

Screened potential

[em™]

o

10

10° 10° 10

FIG. 12. Diagonal bare Coulomb matrix elements vs momentum FIG. 13. Diagonal static screened Coulomb matrix elements vs

transfer g. Upper (lower) solid lines denotevgd (Vf]d). Upper
dashed curve denotes diagonal matrix element for scattering
tween particles in the subbandsg,h;,h,. Lower dashed curve is
for scattering involving the second conduction subband.

momentum transfer. Uppélower) solid curve denote¥3S, (V34).
béJpper dashed curve denotes diagonal matrix element for scattering

between particles in the subbareish, ,h,. Lower dashed curve is

for scattering involving the second conduction subband.
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-12¢ The screening length used in our calculations was taken to
Non Diagonal Screened potential be k=2.5x10° cm™ %, which is consistent with a 2D carrier
density of 18?2 cm™2. In Fig. 13 the screened Coulomb scat-
tering therefore shows a behavior similar to the bare Cou-
lomb scattering fogq>10° cm™! but the elements approach
constants foq well below 16 cm™ L.

The diagonal elements give rise to thermalization within
the subbands; these processes do not change the number of
particles within the subband.

In our example the nondiagonal matrix elements were di-
vided into the three groups shown in Fig. 14 for the static
screened Coulomb potential. The upper dashed curve shows
[cm'1] V(hy,,h,ihy,hy) or V(hg,hyihy,hy), the solid line is
1 ‘ . . . q V(hm,€;€j,h,) or V(e ,h,;hy,e)), and the lower dashed
10° 10° 10* 10° 10 line showsV(e; e ;e;,e) or V(e e ;e ,g). In all cases
poth i#j and m#n. The direct or exchange nondiagonal
vs momentum transfeg, Upper (lower) dashed line shows nondi- elements are responsible to a net_ exchange of carriers be-
agonal matrix elements for scattering of valericenduction sub- tween the subbands, hence_ causing the occupat!on of the
band carriers. The solid line shows a typical nondiagonal matrixdubbands to change. The diagonal elements of Fig. 13 are

element which comprise a mixture of valence and conduction subS€en to be about an Orqer of magnitude larger than the non-
band carriergsee text diagonal elements of Fig. 14.

[em™]

norm. Vsq
|
@

FIG. 14. Nondiagonal static screened Coulomb matrix element

Figs. 12 and 13 which display the diagonal bare Coulomb
matrix elementsV, and diagonal static screened Coulomb
matrix elements/s 4 as a function of transverse momentum  The dynamics of the expectation values of the oper&tor

g. The matrix elements are divided by £4e?)/(Ve,); the  may reside in the density operatpror in the operator®

units of the normalized elements drem™2]. In bulk mate- itself, depending on whether we work in the Satirger or

rials the bare Coulomb matrix element scales\/égoc 1/g?>  the Heisenberg picture, respectively. In this work the Heisen-
while in a pure 2D system it scales ¥§"«1/q. The curves berg picture is used, and the dynamic equations are given by
in Fig. 12 for bulk 3D and pure 2D structures are therefore
straight linegsolid) in the double-logarithmic plot. The other
curves are diagonal elements where the upper dashed curve
shows a typical element for bare Coulomb scattering where
none of the particles are from the subbamd The lower Taking the system Hamiltonian as the sum of E@, (4),
dashed curve denotes a typical element wiegris involved. ~ and (5), using fermion anticommutation relations, and some
The behavior in the long-wavelength regiga-0 is close to index .manlpulanons leads to the rate equations for the ex-
the purely 2D, while in thej>10° cm ! range, it begins to Pectation valuesie ,, np, , for the electron and hole num-
tend toward 3D behavior. bers and for the dipole expectation valpig:

APPENDIX B: DERIVATION OF THE SBE’s

o
0= g[H,O]. (B1)

d 1 1 . 1 ,
anei'pz—m<[H,aei’paei,p]>:ﬁ[—E(t)«(Mppp—Mp pp)]éei ’el+ﬁe2qu h,Eh Vq(em,hj ;hj,ei)
m K" i ohj

t T . T t
><<aem'p+qaei ,pbhj/ ,—k/—th,- k) — V(& ,hi5h; ,em)<aei 'paem,p+thj, ,—k'—th,- —k)

t T

’ . T ' . T
+e'Ee Vq(ej 1€ ,em,ej)<aei ,Daej’ ’k/,qaej ,k'aem,p—q>_vq(ej 1€m i€ !ej)<aem,p+qaej’ 'k/,qaej ,k’aei ,p> d (BZ)
i
d - T 1 * *
Pl ﬁ([H B —pbh —p])= ﬁ[_ E(t)- (ppPy — p5 Pp) 16h, b,
. : t :
+? E E Vq(hj vhi;hmvhj)<bg-,—pbhf _kr.,_th»,fk’bh ,7pfq>_vq(hj vhm;hiahj)
| hm,k,,q h]r ,hJ I i’ ] m
T . T
X(bﬁm',p,thj, o qPny —obn )+ 2 Vo(hm.€] ;e hi)(bl b, Pl ke, )
ej ,ej
. T
_Vq(hi 'ej 1€ 1hm)<b;r1i ,—pbhm,fpfqaej' ’kr_qaej ,k’> ) (B3)
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d 1 1
app: - E<[Habhl,—pael,p]>:m (8el,p+8hl,p)pp+E(t)'Mpg(nhl,p+ne1,p_1)+% Vq(elahl;hlael)<pel,hl,p—q>

1 : t ,
+ E |: E Vq(elahj ;hj ,em)<bhjr y—k'+thj ’_k/aem,p+th1’_p)+ 2 Vq(ej !hl;hj em)
k/’q ’

!
hj hjem g hjem

t ’ . T
X<aej’ ,k’+thj ,—p+qaem,k’ael,p>_ , E Vq(hj ,hl,hj ’hm)<bhj’ ,—k’—thj ’_p_thm,_k,ael,p)
h: ,hi ,h
jrTm

. T
_ Z Vq(ej’ !el1ej ,em)<aej, ’k,+qaej ,p+qaem,k’bh1,—p> . (B4)

’
€ .6 .y

The three expectation values, ,, n, ,, andp, are two-  values in Eqs(B2)—(B4) and after some algebra and index

operator expectation values, and their rate equations af@anipulations, we get the set of equations given by Egs.
given in terms of four-operator expectation values. By using(6)—(10).

Eg. (B1) on the four-operator expectation values we get rate In order to write explicit terms for the collision parts of
equations given in terms of six-operator expectation valueshe SBE’s(11) and(12) , we need to write the equations of
Continuing the iteration gives an infinite hierarchy of the four-operator correlation teriithe lasté term in Eq.
coupled equations, known as the BBGYK hierarchy. The setB5)], for each correlation in Eq4B2)—(B4). In the next

of equations may be truncated by nullifying the correlatedstep, keeping only the Hartree-Fock factored terms and re-
part of the 2N+ 1)-operator expectation value in the rate placing the bare Coulomb potential with the screened poten-
equations for the R-operator expectation values. For the tial we get the Eqs(11) and(12) . Following this procedure,
two-operator rate equations, this yields the SBE in the freewe find the asymptotic limit—o of the quantum kinetic
carrier model. For the four-operator expectation values iequation for the four-operator correlation equation, in which
gives the SBE's in the interacting carrier model along with\ye assume that the relaxation time of the correlation part is
the collision equations. Each expectation value ofNadp- — short compared with that of the single-parti¢@ogoliubov
erator can be decomposed into all possible products of exgnproximatiofi®9. Using this procedure, we get relaxed cor-
pectation values of lower-order operators plus a contributiong|ation functions determined in terms of nonequilibrium
from the correlated part of theN2operator which cannot be wo-gperator expectation values, which yields a scattering

expressed as product of lower-order tertigs is the well- integral along with the screened potential.
known Wick theorerfi?®).

Since we are interested in the spectral hole burning effect,
it is necessary to evaluate the four-operator correlations. For
this case the six-operator correlations are neglected. It can be
done by using the Hartree-Fock factorization method, in In the following scattering rate terms, # denotes the
which the first-order contribution of the expectation value ofconduction band, thep denotes the valence band and vice
a 2N-operator expectation value is given by all possible ex-versa. One can get the outscattering rate temfﬁg by re-
pectation value products of two-operator expectation valueslacing Ny p<1—n, , in Egs.(C3), (C4), and(C6). Before
For example, the third four-operator expectation value in Eqwriting the explicit form of the rate terms in Eqél1) and
(B2) yields (12), we introduce the following two Coulomb matrix ele-

ments:

APPENDIX C: COLLISION RATES

t t
<aei ,Paej' YI(,7CJa.eJ, ’k/aem’p_q>

v%,p,q()\j y7\m;)\n y7\i)

= — nei ,pnem,p—qép,k’éei € 561’ e
. :Vs,qo\j Amilg aki)_vs,lk—p—q\o\j AmiNisAn),

+
+ 5(aei ’paej, K- g, Yk,aemyp_q% (B5) (C1)

where the first term is the Hartree-Fock factorization process

N2 .
contribution and the lass term is the four-operator correla- ~ Vip.a(AjsAmiAn:Ni)
tion (neglectingd,, o terms due to charge neutralitRepeat- . ~1
ing this procedure for all of the four-operator expectation =V5qA Amihn Ni) Vi p oV Amihn A), - (C2)
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. 2 ~
FL:,pZW E 2 5(8a p+q+8 qu_gan,k_sai,p)'[VE,pq(a’jram;a’naai)]'[(l_nan,k)'nam,qu'naj,p+q]

k,q,aj ap,ay

+ﬁzﬂ o(e a P+ Ep, k- q+8Bm Sai,p)HVs,q(ajuBm;,Bn10‘i)|2'(1_n,8n,qu)'nﬁm,k'naj ,p+q]- (C3
ns*Mm

2
A'n( — 2 {[5(sa p+aT Eag k-~ Eay k™ Ea; p)” Ne, p+q+5(sa pra €8 k-at €, Kk

€ p) na p+q] [V q(aj B1:B1, @) Vkpq(a11a11a1 a;)- pk q pk+cc]}_%quﬁ_ {5(80,j‘p+q_8,81,k—q
/0. Bj

tep k€ o) g, Kk [Veglar,Bi:Br i) Vs k—p-qla1,Bj;B1, @) Px—q- PprqtC.Cl}, (C4

A1)=z 2 [S(e +e —€4 Kk~ €4 p)(N
ap g o aq,ptq g .k—q ay, Kk ag,p ay, Kk

Am A

aa
+52

K,

_nam,qu)]'[Vg,q(amvﬁl;ﬂlyan)'vi,p,q(amval;alran)'p;+q] E [6(8011 p+a~ €8, k- q+8B k

m

_Sal,p)'(nﬁm,qu_n,Bn,k)]'[V;q(era’l;a'l’,Bn)'v&,p,q(ﬁmyﬂl;lglyﬂn)'p;+q] + % % ,BmE,an [5(8an,p+q

_SBm,qu—i_SBl,k_sal,p)' (an,qu_nan,erq)]'[V:,q(alvﬁm;Blaan)'Vs,\kfpfq|(ala,8m;,81’an) : pﬁ]}, (CH

™
APD==> 1 [8(ep, prat€ay k™ Eay k- €pp) (1
1 f ! '

k,q | am,an

_nam,k)] ' nan,k—q'[vg,q(amrﬁl;ﬂla ) Vk P, q(amnalaalnan pp+q]

w
%kz |: E’B [5(8B1,D+q+sﬁm,k—

—e5 kg, (1=Ng 11 Ng 1 [VEq(Bnrazias,Bm) - Vicpo( Bn:B1iB1Bm) - Ppsq]

Z [5(8ﬁ Pt sal,k+£an,k—q_8ﬁl,p)'nan,k—q]'(l

Bman

i

—Ng. ,p+q) ) [V:,q(ﬂm ,@1;an,B1)- Vs,|k—p—q\(:8m yay;an,B)- pk]}- (Co)

A T E {8(e —& teg k—ey o) [VE(am, B1iB1 1) Vi (am,agaq,a1) PE P}
a;.p” p Ko @ .pt+q Bq1.k—q Bq.K ag,p s,g\®m:P1:P1,%1 k,p,g\ ®m: &1, 21,41 k—qMk

+{5(8am,p+q+gal,qu_sal,k_8a1,p)'[Vz,q(aliﬂl;ﬁlvam) "\v/i.,p,q(alial;aliam) : pqup’kc]}
+{5(8,81,p+q+8am,k_sal,k—q_sﬁl,p)‘[V:,q(amrﬁl;ﬂlaal) 'Vlk—p—q\(amial;alval)‘ p:—qpp+q]}v (C7)

A = = 3 (86 0y pra™ Say ko q— Say k—Fay o) Vil anian,a1) Vi o B1.B1i Br.By) - PPl Pp-al)
ag,p % = ag,ptq ay;,k—q aq .k ag,p sgl&1,61, 07,07 k,p,g\P1:P1:P1:P1 k—qMk Mp+q

—1ar
XT ;} {5(8B1,p+q_Sal.k—q+8al,k_sﬁl,p) : [|V;q(a1,,81;ﬁl,a1)|2- p’kc—qpkpp+q]}' (CY
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Each of these collision integral expressidhsA,A) denotes  —¢,). The direct terms are the same for both angles because
a rate which is computed via a discrete summation over sultheir scalar product magnitudes are equal. These terms con-
bands and three integrations. For egckhe integration is tagjn products of the fornvg q( - - ')'ng(' --). On the other

held overq, over the angle betwegmandq (¢), and overk.  hand, in the exchange terms which contain products of the
In the Markovian approximation, the angle betwdeandq {5y v*

) X . ) (++)-Vsk—p-q---), the magnitude of the vec-
S,q ) pP—q

(¢) is determined by the energy D!rm:functlon._ There are, .. k—p—q| is affected differently bys, and 27— ¢, due to

however, subtle cases where the integrand diverges, such s

longitudinal scattering at diagonal elements = *£kq); € angle betweek andp (¢4 and ¢—¢). All in all the

. : : . _direct terms have a factor of 2 whereas the exchange terms
these divergences can be removed by variable manipulations

which change the limits of thkintegration. These limits are sptht Into 3'\;0 casets. 2It cgnlge fheen that q‘dnmttlatgr?tum frgm i
different for diagonal scattering and nondiagonal scatterin gwanh romm to Wy's s’ € same results for the |r|ec
due to the different subband mass considered in our exampl8Nd €xchange cases and, hence, one can integrate only over

There are two possible angles for eactk (¢, and 2 the first region and have an additional overall factor of 2.
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