26,618 research outputs found
Observing and modeling the poloidal and toroidal fields of the solar dynamo
Context. The solar dynamo consists of a process that converts poloidal field
to toroidal field followed by a process which creates new poloidal field from
the toroidal field.
Aims. Our aim is to observe the poloidal and toroidal fields relevant to the
global solar dynamo and see if their evolution is captured by a
Babcock-Leighton dynamo.
Methods. We use synoptic maps of the surface radial field from the KPNSO/VT
and SOLIS observatories to construct the poloidal field as a function of time
and latitude, and Wilcox Solar Observatory and SOHO/MDI full disk images to
infer the longitudinally averaged surface azimuthal field. We show that the
latter is consistent with an estimate of that due to flux emergence and
therefore closely related to the subsurface toroidal field.
Results. We present maps of the poloidal and toroidal magnetic field of the
global solar dynamo. The longitude-averaged azimuthal field observed at the
surface results from flux emergence. At high latitudes this component follows
the radial component of the polar fields with a short time lag (1-3 years). The
lag increases at lower latitudes. The observed evolution of the poloidal and
toroidal magnetic fields is described by the (updated) Babcock-Leighton dynamo
model.Comment: A&
Waves as the source of apparent twisting motions in sunspot penumbrae
The motion of dark striations across bright filaments in a sunspot penumbra
has become an important new diagnostic of convective gas flows in penumbral
filaments. The nature of these striations has, however, remained unclear. Here
we present an analysis of small scale motions in penumbral filaments in both
simulations and observations. The simulations, when viewed from above, show
fine structure with dark lanes running outwards from the dark core of the
penumbral filaments. The dark lanes either occur preferentially on one side or
alternate between both sides of the filament. We identify this fine structure
with transverse (kink) oscillations of the filament, corresponding to a
sideways swaying of the filament. These oscillations have periods in the range
of 5-7 min and propagate outward and downward along the filament. Similar
features are found in observed G-band intensity time series of penumbral
filaments in a sunspot located near disk center obtained by the Broadband
Filter Imager (BFI) on board {\it Hinode}. We also find that some filaments
show dark striations moving to both sides of the filaments. Based on the
agreement between simulations and observations we conclude that the motions of
these striations are caused by transverse oscillations of the underlying bright
filaments.Comment: Accepted for publication in Astrophysical Journal on 8th April 201
UV Spectroscopy of AB Doradus with the Hubble Space Telescope. Impulsive flares and bimodal profiles of the CIV 1549 line in a young star
We observed AB Doradus, a young and active late type star (K0 - K2 IV-V, P=
0.514 d) with the Goddard High Resolution Spectrograph of the post-COSTAR
Hubble Space Telescope with the time and spectral resolutions of 27 s and 15
km, respectively. The wavelength band (1531 - 1565 A) included the strong CIV
doublet (1548.202 and 1550.774, formed in the transition region at 100 000 K).
The mean quiescent CIV flux state was close to the saturated value and 100
times the solar one. The line profile (after removing the rotational and
instrumental profiles) is bimodal consisting of two Gaussians, narrow (FWHM =
70 km/s) and broad (FWHM =330km/s). This bimodality is probably due to two
separate broadening mechanisms and velocity fields at the coronal base. It is
possible that TR transient events (random multiple velocities), with a large
surface coverage, give rise to the broadening of the narrow component,while
true microflaring is responsible for the broad one.
The transition region was observed to flare frequently on different time
scales and magnitudes. The largest impulsive flare seen in the CIV 1549
emission reached in less than one minute the peak differential emission measure
(10**51.2 cm-3) and returned exponentially in 5 minutes to the 7 times lower
quiescent level.The 3 min average line profile of the flare was blue-shifted
(-190 km/s) and broadened (FWHM = 800 km/s). This impulsive flare could have
been due to a chromospheric heating and subsequent evaporation by an electron
beam, accelerated (by reconnection) at the apex of a coronal loop.Comment: to be published in AJ (April 98), 3 tables and 7 figures as separate
PS-files, print Table 2 as a landscap
The azimuthal component of Poynting's vector and the angular momentum of light
The usual description in basic electromagnetic theory of the linear and angular momenta of light is centred upon the identification of Poynting's vector as the linear momentum density and its cross product with position, or azimuthal component, as the angular momentum density. This seemingly reasonable approach brings with it peculiarities, however, in particular with regards to the separation of angular momentum into orbital and spin contributions, which has sometimes been regarded as contrived. In the present paper, we observe that densities are not unique, which leads us to ask whether the usual description is, in fact, the most natural choice. To answer this, we adopt a fundamental rather than heuristic approach by first identifying appropriate symmetries of Maxwell's equations and subsequently applying Noether's theorem to obtain associated conservation laws. We do not arrive at the usual description. Rather, an equally acceptable one in which the relationship between linear and angular momenta is nevertheless more subtle and in which orbital and spin contributions emerge separately and with transparent forms
Coronal structure of the cTTS V2129 Oph
The nature of the magnetic coupling between T Tauri stars and their disks
determines not only the mass accretion process but possibly the spin evolution
of the central star. We have taken a recently-published surface magnetogram of
one moderately-accreting T Tauri star (V2129 Oph) and used it to extrapolate
the geometry of its large-scale field. We determine the structure of the open
(wind-bearing) field lines, the closed (X-ray bright) field lines and those
potentially accreting field lines that pass through the equatorial plane inside
the Keplerian co-rotation radius. We consider a series of models in which the
stellar magnetic field is opened up by the outward pressure of the hot coronal
gas at a range of radii. As this radius is increased, accretion takes place
along simpler field structures and impacts on fewer sites at the stellar
surface. This is consistent with the observed variation in the Ca II IRT and
HeI lines which suggests that accretion in the visible hemisphere is confined
to a single high-latitude spot. By determining the density and velocity of the
accretion flows, we find that in order to have most of the total mass accretion
rate impacting on a single high-latitude region we need disk material to
accrete from approximately 7R*, close to the Keplerian co-rotation radius at
6.8R*. We also calculate the coronal density and X-ray emission measure. We
find that both the magnitude and rotational modulation of the emission measure
increase as the source surface is increased. For the field structure of V2129
Oph which is dominantly octupolar, the emission forms a bright, high-latitude
ring that is always in view as the star rotates. Since the accretion funnels
are not dense enough to cause significant scattering of coronal X-ray photons,
they provide only a low rotational modulation of around 10% at most.Comment: 10 pages, 9 figure
- …