21,669 research outputs found
Defining Hierarchical Decision Trees for Encarsia Formosa Strategies from Greenhouse Tomato Consultants' Perspectives
Market pressure is forcing New Zealand greenhouse tomato growers to shift from conventional to more environmentally-friendly pest control methods such as IPM (Integrated Pest Management). Growers can access IPM manuals, but these tend to provide generalized advice, which they find difficult to apply to their own situations. Alternatively, growers can use consultants to tailor IPM strategies to their own situations. One method of providing growers with better advice is to capture the knowledge of "expert" consultants and translate this into a form that can be used by growers. To this end, two consultants with expertise in IPM strategy were studied and their knowledge documented. This paper focuses on the strategies the expert consultants used to tailor Encarsia formosa, a natural enemy of greenhouse whitefly, to individual greenhouse's specific needs. Both consultants used an IPM template and seven to eight decision criteria to tailor their advice to individual grower's situations. These decisions were represented as hierarchical decision trees. One consultant started with low Encarsia rates for a short time before increasing them while the other consultant started with high Encarsia rates for a longer period before decreasing them later. Growers' risk perceptions and acceptance of the consultants' pest threshold levels influenced the success of the IPM strategy.decision trees, consultants, Encarsia, greenhouse tomato, Farm Management,
Very-large-scale motions in rough-bed open-channel flow
Acknowledgements The study has been supported by two EPSRC/UK grants, ‘High-resolution numerical and experimental studies of turbulence-induced sediment erosion and near-bed transport’ (EP/G056404/1) and ‘Bed friction in rough-bed free-surface flows: a theoretical framework, roughness regimes, and quantification’ (EP/K041169/1). Discussions with I. Marusic and comments of three anonymous reviewers are greatly appreciated.Peer reviewedPublisher PD
Double-averaged velocity and stress distributions for hydraulically-smooth and transitionally-rough turbulent flows
Peer reviewedPreprin
Projections for future radiocarbon content in dissolved inorganic carbon in hardwater lakes: a retrospective approach
Inland water bodies contain significant amounts of carbon in the form of dissolved inorganic carbon (DIC) derived from a mixture of modern atmospheric and pre-aged sources, which needs to be considered in radiocarbon-based dating and natural isotope tracer studies. While reservoir effects in hardwater lakes are generally considered to be constant through time, a comparison of recent and historical DI14C data from 2013 and 1969 for Lake Constance reveals that this is not a valid assumption. We hypothesize that changes in atmospheric carbon contributions to lake water DIC have taken place due to anthropogenically forced eutrophication in the 20th century. A return to more oligotrophic conditions in the lake led to reoxygenation and enhanced terrigenous organic matter remineralization, contributing to lake water DIC. Such comparisons using DI14C measurements from different points in time enable nonlinear changes in lake water DIC source and signature to be disentangled from concurrent anthropogenically induced changes in atmospheric 14C. In the future, coeval changes in lake dynamics due to climate change are expected to further perturb these balances. Depending on the scenario, Lake Constance DI14C is projected to decrease from the 2013 measured value of 0.856 Fm to 0.54–0.62 Fm by the end of the century
Ice core evidence for a second volcanic eruption around 1809 in the Northern Hemisphere
A volcanic signal observed in ice cores from both polar regions six years prior to Tambora is attributed to an unknown tropical eruption in 1809. Recovery of dacitic tephra from the 1809 horizon in a Yukon ice core (Eclipse) that is chemically distinct from andesitic 1809 tephra found in Antarctic ice cores indicates a second eruption in the Northern Hemisphere at this time. Together with the similar magnitude and timing of the 1809 volcanic signal in the Arctic and Antarctic, this could suggest a large tropical eruption produced the sulfate and Antarctic tephra and a minor Northern Hemisphere eruption produced the Eclipse tephra. Nonetheless, the possibility that there were coincidental eruptions of similar magnitude in both hemispheres, rather than a single tropical eruption, should not be discounted. Correctly attributing the source of the 1809 volcanic signal has important implications for modeling the magnitude and latitudinal distribution of volcanic radiative forcing
Gap and channelled plasmons in tapered grooves: a review
Tapered metallic grooves have been shown to support plasmons --
electromagnetically coupled oscillations of free electrons at metal-dielectric
interfaces -- across a variety of configurations and V-like profiles. Such
plasmons may be divided into two categories: gap-surface plasmons (GSPs) that
are confined laterally between the tapered groove sidewalls and propagate
either along the groove axis or normal to the planar surface, and channelled
plasmon polaritons (CPPs) that occupy the tapered groove profile and propagate
exclusively along the groove axis. Both GSPs and CPPs exhibit an assortment of
unique properties that are highly suited to a broad range of cutting-edge
nanoplasmonic technologies, including ultracompact photonic circuits,
quantum-optics components, enhanced lab-on-a-chip devices, efficient
light-absorbing surfaces and advanced optical filters, while additionally
affording a niche platform to explore the fundamental science of plasmon
excitations and their interactions. In this Review, we provide a research
status update of plasmons in tapered grooves, starting with a presentation of
the theory and important features of GSPs and CPPs, and follow with an overview
of the broad range of applications they enable or improve. We cover the
techniques that can fabricate tapered groove structures, in particular
highlighting wafer-scale production methods, and outline the various photon-
and electron-based approaches that can be used to launch and study GSPs and
CPPs. We conclude with a discussion of the challenges that remain for further
developing plasmonic tapered-groove devices, and consider the future directions
offered by this select yet potentially far-reaching topic area.Comment: 32 pages, 34 figure
- …
