29,566 research outputs found

    Mapping crime: Understanding Hotspots

    Get PDF

    Detecting a rotation in the epsilon Eridani debris disc

    Full text link
    The evidence for a rotation of the epsilon Eridani debris disc is examined. Data at 850 micron wavelength were previously obtained using the Submillimetre Common User Bolometer Array (SCUBA) over periods in 1997-1998 and 2000-2002. By chi-square fitting after shift and rotation operations, images from these two epochs were compared to recover proper motion and orbital motion of the disc. The same procedures were then performed on simulated images to estimate the accuracy of the results. Minima in the chi-square plots indicate a motion of the disc of approximately 0.6'' per year in the direction of the star's proper motion. This underestimates the true value of 1'' per year, implying that some of the structure in the disc region is not associated with epsilon Eridani, originating instead from background galaxies. From the chi-square fitting for orbital motion, a counterclockwise rotation rate of ~2.75 degrees per year is deduced. Comparisons with simulated data in which the disc is not rotating show that noise and background galaxies result in approximately Gaussian fluctuations with a standard deviation +/-1.5 degrees per year. Thus counterclockwise rotation of disc features is supported at approximately a 2-sigma level, after a 4-year time difference. This rate is faster than the Keplerian rate of 0.65 degrees per year for features at ~65 AU from the star, suggesting their motion is tracking a planet inside the dust ring. Future observations with SCUBA-2 can rule out no rotation of the epsilon Eridani dust clumps with ~4-sigma confidence. Assuming a rate of about 2.75 degrees per year, the rotation of the features after a 10-year period could be shown to be >1 degree per year at the 3-sigma level.Comment: 8 pages, 6 figure

    Magnetic activity on AB Doradus: Temporal evolution of starspots and differential rotation from 1988 to 1994

    Get PDF
    Surface brightness maps for the young K0 dwarf AB Doradus are reconstructed from archival data sets for epochs spanning 1988 to 1994. By using the signal-to-noise enhancement technique of Least-Squares Deconvolution, our results show a greatly increased resolution of spot features than obtained in previously published surface brightness reconstructions. These images show that for the exception of epoch 1988.96, the starspot distributions are dominated by a long-lived polar cap, and short-lived low to high latitude features. The fragmented polar cap at epoch 1988.96 could indicate a change in the nature of the dynamo in the star. For the first time we measure differential rotation for epochs with sufficient phase coverage (1992.05, 1993.89, 1994.87). These measurements show variations on a timescale of at least one year, with the strongest surface differential rotation ever measured for AB Dor occurring in 1994.86. In conjunction with previous investigations, our results represent the first long-term analysis of the temporal evolution of differential rotation on active stars.Comment: accepted by MNRAS 18 pages 18 figure

    Perfect countably infinite Steiner triple systems

    Get PDF
    We use a free construction to prove the existence of perfect Steiner triple systems on a countably infinite point set. We use a specific countably infinite family of partial Steiner triple systems to start the construction, thus yielding 2ℵ0 non-isomorphic perfect systems

    Penetration and spreading of transverse jets of hydrogen in a Mach 2.72 airstream

    Get PDF
    Schlieren photography of flow distribution for transverse hydrogen jets from flat plate into Mach 2.72 airstrea

    Supporting arts and science communities on-line

    Get PDF
    This paper examines the use of the Web to support continuing professional development (CPD). It outlines the factors driving the adoption of CPD and highlights areas where the Web can aid in the development of successful professional communities. A survey examining the use of the Internet to support professionals working in the domains of the Arts and Science is presented. The study reviews twenty four sites for the presence and degree of adoption of several key features including: - community building, range and value of content, user friendliness and guidance, sophistication of employed Web technology

    Implications of using On-Farm Flood Flow Capture to recharge groundwater and mitigate flood risks along the Kings River, CA

    Get PDF
    Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M)

    UV Spectroscopy of AB Doradus with the Hubble Space Telescope. Impulsive flares and bimodal profiles of the CIV 1549 line in a young star

    Get PDF
    We observed AB Doradus, a young and active late type star (K0 - K2 IV-V, P= 0.514 d) with the Goddard High Resolution Spectrograph of the post-COSTAR Hubble Space Telescope with the time and spectral resolutions of 27 s and 15 km, respectively. The wavelength band (1531 - 1565 A) included the strong CIV doublet (1548.202 and 1550.774, formed in the transition region at 100 000 K). The mean quiescent CIV flux state was close to the saturated value and 100 times the solar one. The line profile (after removing the rotational and instrumental profiles) is bimodal consisting of two Gaussians, narrow (FWHM = 70 km/s) and broad (FWHM =330km/s). This bimodality is probably due to two separate broadening mechanisms and velocity fields at the coronal base. It is possible that TR transient events (random multiple velocities), with a large surface coverage, give rise to the broadening of the narrow component,while true microflaring is responsible for the broad one. The transition region was observed to flare frequently on different time scales and magnitudes. The largest impulsive flare seen in the CIV 1549 emission reached in less than one minute the peak differential emission measure (10**51.2 cm-3) and returned exponentially in 5 minutes to the 7 times lower quiescent level.The 3 min average line profile of the flare was blue-shifted (-190 km/s) and broadened (FWHM = 800 km/s). This impulsive flare could have been due to a chromospheric heating and subsequent evaporation by an electron beam, accelerated (by reconnection) at the apex of a coronal loop.Comment: to be published in AJ (April 98), 3 tables and 7 figures as separate PS-files, print Table 2 as a landscap

    Rotationally Modulated X-ray Emission from T Tauri Stars

    Get PDF
    We have modelled the rotational modulation of X-ray emission from T Tauri stars assuming that they have isothermal, magnetically confined coronae. By extrapolating surface magnetograms we find that T Tauri coronae are compact and clumpy, such that rotational modulation arises from X-ray emitting regions being eclipsed as the star rotates. Emitting regions are close to the stellar surface and inhomogeneously distributed about the star. However some regions of the stellar surface, which contain wind bearing open field lines, are dark in X-rays. From simulated X-ray light curves, obtained using stellar parameters from the Chandra Orion Ultradeep Project, we calculate X-ray periods and make comparisons with optically determined rotation periods. We find that X-ray periods are typically equal to, or are half of, the optical periods. Further, we find that X-ray periods are dependent upon the stellar inclination, but that the ratio of X-ray to optical period is independent of stellar mass and radius.Comment: 10 pages, 8 figures, accepted for publication in MNRA
    • …
    corecore