276 research outputs found

    Alteration of stim1/orai1-mediated soce in skeletal muscle: Impact in genetic muscle diseases and beyond

    Get PDF
    Intracellular Ca2+ ions represent a signaling mediator that plays a critical role in regulating different muscular cellular processes. Ca2+ homeostasis preservation is essential for maintaining skeletal muscle structure and function. Store-operated Ca2+ entry (SOCE), a Ca2+-entry process activated by depletion of intracellular stores contributing to the regulation of various function in many cell types, is pivotal to ensure a proper Ca2+ homeostasis in muscle fibers. It is coordinated by STIM1, the main Ca2+ sensor located in the sarcoplasmic reticulum, and ORAI1 protein, a Ca2+-permeable channel located on transverse tubules. It is commonly accepted that Ca2+ entry via SOCE has the crucial role in short-and long-term muscle function, regulating and adapting many cellular processes including muscle contractility, postnatal development, myofiber phenotype and plasticity. Lack or mutations of STIM1 and/or Orai1 and the consequent SOCE alteration have been associated with serious consequences for muscle function. Importantly, evidence suggests that SOCE alteration can trigger a change of intracellular Ca2+ signaling in skeletal muscle, participating in the pathogenesis of different progressive muscle diseases such as tubular aggregate myopathy, muscular dystrophy, cachexia, and sarcopenia. This review provides a brief overview of the molecular mechanisms underlying STIM1/Orai1-dependent SOCE in skeletal muscle, focusing on how SOCE alteration could contribute to skeletal muscle wasting disorders and on how SOCE components could represent pharmacological targets with high therapeutic potential

    (S)-(−)-Fluorenylethylchloroformate (FLEC) ; preparation using asymmetric transfer hydrogenation and application to the analysis and resolution of amines

    Get PDF
    Fluorenylethylchoroformate (FLEC) is a valuable chiral derivatisation reagent that is used for the resolution of a wide variety of chiral amines. Herein, we describe an improved preparation of (S)-(−)-FLEC using an efficient asymmetric catalytic transfer hydrogenation as the key step. We also demonstrate the application of FLEC as a chiral Fmoc equivalent for chiral resolution, with facile deprotection, of tetrahydroquinaldines, and its capacity for inducing regioselective outcomes in nitration reactions

    Pathomechanisms of a CLCN1 Mutation Found in a Russian Family Suffering From Becker's Myotonia

    Get PDF
    Objective: Myotonia congenita (MC) is a rare muscle disease characterized by sarcolemma over-excitability inducing skeletal muscle stiffness. It can be inherited either as an autosomal dominant (Thomsen's disease) or an autosomal recessive (Becker's disease) trait. Both types are caused by loss-of-function mutations in the CLCN1 gene, encoding for ClC-1 chloride channel. We found a ClC-1 mutation, p.G411C, identified in Russian patients who suffered from a severe form of Becker's disease. The purpose of this study was to provide a solid correlation between G411C dysfunction and clinical symptoms in the affected patient. Methods: We provide clinical and genetic information of the proband kindred. Functional studies include patch-clamp electrophysiology, biotinylation assay, western blot analysis, and confocal imaging of G411C and wild-type ClC-1 channels expressed in HEK293T cells. Results: The G411C mutation dramatically abolished chloride currents in transfected HEK cells. Biochemical experiments revealed that the majority of G411C mutant channels did not reach the plasma membrane but remained trapped in the cytoplasm. Treatment with the proteasome inhibitor MG132 reduced the degradation rate of G411C mutant channels, leading to their expression at the plasma membrane. However, despite an increase in cell surface expression, no significant chloride current was recorded in the G411C-transfected cell treated with MG132, suggesting that this mutation produces non-functional ClC-1 chloride channels. Conclusion: These results suggest that the molecular pathophysiology of G411C is linked to a reduced plasma membrane expression and biophysical dysfunction of mutant channels, likely due to a misfolding defect. Chloride current abolition confirms that the mutation is responsible for the clinical phenotype

    Prognostic impact of bone invasion in canine oral malignant melanoma treated by surgery and anti-CSPG4 vaccination: A retrospective study on 68 cases (2010–2020)

    Get PDF
    Prognosis of canine oral malignant melanoma encompasses clinical, histological and immunohistochemical parameters. The aim of this study was to evaluate the prognostic impact of bone invasion in oral canine melanoma. Sixty‐eight dogs bearing oral melanoma staged II and III that underwent surgery and anti‐CSPG4 electrovaccination, with available histological data and a minimum follow up of minimum 1 year, were retrospectively selected. Bone invasion was detected on imaging and/or histology. Median survival time of dogs with evidence of bone invasion (group 1) was 397 days and significantly shorter compared with dogs with oral melanomas not invading the bone (group 2, 1063 days). Dogs with tumours localised at the level of the cheek, lip, tongue and soft palate (soft tissue ‐ group 3) lived significantly longer compared with dogs having tumours within the gingiva of the maxilla or mandible (hard tissue ‐ group 4) with a median survival time of 1063 and 470 days, respectively. Within group 4, the subgroup of dogs with tumours not invading the bone (group 5) showed a significant prolonged survival time (972 days) in comparison with dogs of group 1 (bone invasion group). Similar results were obtained for the disease‐free intervals amongst the different groups. Statistical analysis showed that Ki67 and mitotic count were correlated with shorter survival in patients of group 1 (with bone invasion). Bone invasion should always be assessed since it appears to be a negative prognostic factor

    Gain-of-Function STIM1 L96V Mutation Causes Myogenesis Alteration in Muscle Cells From a Patient Affected by Tubular Aggregate Myopathy

    Get PDF
    Tubular Aggregate Myopathy (TAM) is a hereditary ultra-rare muscle disorder characterized by muscle weakness and cramps or myasthenic features. Biopsies from TAM patients show the presence of tubular aggregates originated from sarcoplasmic reticulum due to altered Ca2+ homeostasis. TAM is caused by gain-of-function mutations in STIM1 or ORAI1, proteins responsible for Store-Operated-Calcium-Entry (SOCE), a pivotal mechanism in Ca2+ signaling. So far there is no cure for TAM and the mechanisms through which STIM1 or ORAI1 gene mutation lead to muscle dysfunction remain to be clarified. It has been established that post-natal myogenesis critically relies on Ca2+ influx through SOCE. To explore how Ca2+ homeostasis dysregulation associated with TAM impacts on muscle differentiation cascade, we here performed a functional characterization of myoblasts and myotubes deriving from patients carrying STIM1 L96V mutation by using fura-2 cytofluorimetry, high content imaging and real-time PCR. We demonstrated a higher resting Ca2+ concentration and an increased SOCE in STIM1 mutant compared with control, together with a compensatory down-regulation of genes involved in Ca2+ handling (RyR1, Atp2a1, Trpc1). Differentiating STIM1 L96V myoblasts persisted in a mononuclear state and the fewer multinucleated myotubes had distinct morphology and geometry of mitochondrial network compared to controls, indicating a defect in the late differentiation phase. The alteration in myogenic pathway was confirmed by gene expression analysis regarding early (Myf5, Mef2D) and late (DMD, Tnnt3) differentiation markers together with mitochondrial markers (IDH3A, OGDH). We provided evidences of mechanisms responsible for a defective myogenesis associated to TAM mutant and validated a reliable cellular model usefull for TAM preclinical studies

    Timing of adjuvant chemotherapy after limb amputation and effect on outcome in dogs with appendicular osteosarcoma without distant metastases

    Get PDF
    Objective: To determine an optimal time interval between amputation and initiation of adjuvant chemotherapy (TIamp-chemo) in dogs with appendicular osteosarcoma without distant metastases and whether TIamp-chemo was associated with outcome. Animals: 168 client-owned dogs treated at 9 veterinary oncology centers. Procedures: Data were collected from the dogs' medical records concerning potential prognostic variables and outcomes. Dogs were grouped as to whether they received chemotherapy within 3, 5, 7, 10, 15, 20, 30, or > 30 days after amputation of the affected limb. Analyses were performed to identify variables associated with time to tumor progression and survival time after limb amputation and to determine an optimal TIamp-chemo. Results: Median TIamp-chemo was 14 days (range, 1 to 210 days). Median time to tumor progression for dogs with a TIamp-chemo ≤ 5 days (375 days; 95% CI, 162 to 588 days) was significantly longer than that for dogs with a TIamp-chemo > 5 days (202 days; 95% CI, 146 to 257 days). Median overall survival time for dogs with a TIamp-chemo ≤ 5 days (445 days; 95% CI, 345 to 545 days) was significantly longer than that for dogs with a TIamp-chemo > 5 days (239 days; 95% CI, 186 to 291 days). Conclusions and clinical relevance: Findings indicated that early (within 5 days) initiation of adjuvant chemotherapy after limb amputation was associated with a significant and clinically relevant survival benefit for dogs with appendicular osteosarcoma without distant metastases. These results suggested that the timing of chemotherapy may be an important prognostic variabl

    Ergogenic effect of bcaas and l-alanine supplementation: Proof-of-concept study in a murine model of physiological exercise

    Get PDF
    Background: Branched-chain amino acids (BCAAs: leucine, isoleucine, valine) account for 35% of skeletal muscle essential amino acids (AAs). As such, they must be provided in the diet to support peptide synthesis and inhibit protein breakdown. Although substantial evidence has been collected about the potential usefulness of BCAAs in supporting muscle function and structure, dietary supplements containing BCAAs alone may not be effective in controlling muscle protein turnover, due to the rate-limiting bioavailability of other AAs involved in BCAAs metabolism. Methods: We aimed to evaluate the in vivo/ex vivo effects of a 4-week treatment with an oral formulation containing BCAAs alone (2:1:1) on muscle function, structure, and metabolism in a murine model of physiological exercise, which was compared to three modified formulations combining BCAAs with increasing concentrations of L-Alanine (ALA), an AA controlling BCAAs catabolism. Results: A preliminary pharmacokinetic study confirmed the ability of ALA to boost up BCAAs bioavailability. After 4 weeks, mix 2 (BCAAs + 2ALA) had the best protective effect on mice force and fatigability, as well as on muscle morphology and metabolic indices. Conclusion: Our study corroborates the use of BCAAs + ALA to support muscle health during physiological exercise, underlining how the relative BCAAs/ALA ratio is important to control BCAAs distribution

    Difference in outcome between curative intent vs marginal excision as a first treatment in dogs with oral malignant melanoma and the impact of adjuvant CSPG4-DNA electrovaccination: A retrospective study on 155 cases

    Get PDF
    Canine oral malignant melanoma is locally invasive and highly metastatic. At present, the best option for local control is en bloc excision followed by radiation if excision margins are incomplete. Adjuvantly, the role of chemotherapy is dubious while immunotherapy appears encouraging. This retrospective study evaluated 155 dogs with oral malignant melanomas (24 stage I, 54 stage II, 66 stage III and 11 stage IV) managed in a single institution. The aim was to evaluate the differences in median survival time (MST) and disease‐free interval (DFI) between dogs which, at presentation, were treated surgically with a curative intent (group 1) vs those marginally excised only (group 2). MST in group 1 was longer than in group 2 (594 vs 458 days), but no significant difference was found (P = .57); a statistical difference was, however, found for DFI (232 vs 183 days, P = .008). In the subpopulation of vaccinated dogs, the impact of adjuvant anti‐CSPG4 DNA electrovaccination was then evaluated (curative intent, group 3, vs marginal, group 4); a significant difference for both MST (1333 vs 470 days, respectively, P = .03) and DFI (324 vs 184 days, respectively, P = .008) was found. Progressive disease was significantly more common in dogs undergoing marginal excision than curative intent excision for both the overall population (P = .03) and the vaccinated dogs (P = .02). This study pointed out that, after staging, wide excision together with adjuvant immunotherapy was an effective approach for canine oral malignant melanoma

    A revised genome assembly of the region 5' to canine SOX9 includes the revsex orthologous region

    Get PDF
    The SOX gene family includes many genes that play a determinant role in several developmental pathways. The SOX9 gene has been identified as a major factor in testis development in mammals after it is activated by the SRY gene. However, duplication of the gene itself in some mammalian species, or of a well-delimited upstream 'RevSex' region in humans, has been shown to result in testis development in the absence of the SRY gene. In the current study, we present an accurate analysis of the genomic organization of the SOX9 locus in dogs by both in silico and FISH approaches. Contrary to what is observed in the current dog genome assembly, we found that the genomic organization is quite similar to that reported in humans and other mammalian species, including the position of the RevSex region in respect to SOX9. The analysis of the conserved sequences within this region in 7 mammalian species facilitated the highlighting of a consensus sequence for SRY binding. This new information could help in the identification of evolutionarily conserved elements relevant for SOX9 gene regulation, and could provide valid targets for mutation analysis in XY DSD patients
    corecore