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ABSTRACT 

The SOX gene family includes many genetic factors that play a determinant role in several 

developmental pathways. The SOX9 gene has been identified as a major factor in testis 

development in mammals after it is activated by the SRY gene. However, duplication of the 

gene itself in some mammalian species, or of a well-delimited upstream ‘RevSex’ region in 

humans, has been shown to result in testis development in the absence of the SRY gene. 

In the current study, we present an accurate analysis of genomic organization of the SOX9 

locus in dogs by both in silico and FISH approaches. Contrary to what is observed in the 

current dog genome assembly, we found that the genomic organization is quite similar to 

that reported in humans and other mammalian species, including the position of the 

RevSex region in respect of SOX9. The analysis of the conserved sequences within this 

region in seven mammalian species facilitated the highlighting of a consensus sequence 

for SRY binding. This new information could help in the identification of evolutionary 

conserved elements relevant to SOX9 gene regulation, and could provide valid targets for 

mutation analysis in XY DSD patients. 

 

 



INTRODUCTION 

The transcription factor SOX9 belongs to the SOX (SRY-related HMG box) gene family 

and in humans, plays a pivotal role in several embryonic developmental pathways, such as 

chondrogenesis [Murakami et al., 2000] and testis determination [Eggers et al., 2014]. 

Conditional gonad-specific knockout of Sox9 in XY mice embryos results in the 

development of ovaries [Barrionuevo et al., 2006], whilst its ectopic overexpression in XX 

embryonic gonads leads to the development of testes [Vidal et al., 2001; Qin et al., 2004]. 

In humans, SOX9 haploinsufficiency results in campomelic dwarfism with XY DSD 

(Disorders of Sexual Development) in around 50% of cases [Wagner et al., 1994]. No case 

has ever been reported with SOX9 gain-of-function mutations, or duplications involving 

only the gene’s coding region. On the contrary—both copy number variants (CNVs), and 

interruptions due to translocations within the more than 1.9 Mb desert region at the 5’ of 

SOX9, result in different abnormal phenotypes, including: Pierre Robin sequence, 

brachydactyly-anonychia, congenital heart defects, and both XY and XX DSD (see Figure 

3 in Vetro et al. [2014]). These findings suggest that this desert region contains a series of 

tissue- and time-specific regulatory elements, responsible for the proper activation of the 

gene during embryogenesis. In fact, genomic defects of the desert region partly 

recapitulate the condition of SOX9 haploinsufficiency with campomelic dwarfism and XY 

DSD, whilst these might partly represent the effects of its overexpression. In particular, 

duplications of a minimal overlapping ~70 kb region (RevSex region), at 500 kb upstream 

of SOX9, have been shown to result in testis development in more than 10% of the SRY-

negative XX individuals [Vetro et al., 2014], suggesting that the duplication leads to SOX9 

overexpression through the increased dosage of gonadal-specific enhancers located 

within the RevSex region. Testis differentiation in absence of Sry was also documented in 

XX transgenic mice [Vidal et al., 2001], in one XX deer [Kropatsch et al., 2013] and two XX 

dogs [Rossi et al., 2014], all with the duplication of the SOX9 gene, again suggesting that 



its overexpression may vicariate SRY. In our previous study [Rossi et al., 2014], we 

reported the molecular analysis of seven XX DSD dogs, and showed that two of them 

carried SOX9 gene duplication. Moreover, we identified—in all the seven dogs—a complex 

CNV region located at CF9:16,637,884–18,258,282 (CanFam3 genome assembly), 

already reported by others as polymorphism [Chen et al., 2009; Nicholas et al., 2009; 

Nicholas et al., 2011; Quilez et al., 2011; Berglung et al., 2012; Molin et al., 2014], 

appearing either as gain or loss across the whole region, or gain or loss of only one part of 

the region. This CNV was located at more than 8 Mb from the 3’ end of the SOX9 gene 

(CFA9:8,275,049–8,278,172, plus strains transcription direction), it surprisingly included 

the orthologous of human RevSex region, and it never segregated with the XX DSD 

condition (Figure 1). These findings cast doubt on the point that this RevSex region may 

contain elements that regulate the expression of SOX9 in the gonad. Since the genomic 

structure of the entire desert region upstream of SOX9 appears conserved in various 

mammalian species, we have decided to investigate the correctness of the genomic 

assembly of the SOX9 locus in dogs by in silico and FISH (Fluorescent In Situ 

Hybridization) approaches. Moreover, we have tried to highlight some of the regulation 

mechanisms dictated by the elements located in the unusual large desert region upstream 

of SOX9, by the comparison of its sequence in seven mammalian species. 

 

MATERIALS AND METHODS 

Bioinformatics 

Comparison among the considered RevSex regions was carried out using the Mulan 

software (available online for free at mulan.dcode.org) [Ovcharenko et al., 2005]. The 

parameters considered in this analysis were as follows: ECR (Evolutionary Conserved 

Region) length: at least 100 bp and ECR similarity: at least 95%. Comparison of human 

and dog desert regions was carried out with VISTA software [Frazen et al., 2004] (available 



online for free at http://genome.lbl.gov/vista/mvista/). The VISTA parameters were 

minimum conservation identity of 95% and minimum length for a CNS of 50 bp. Other 

comparisons, including those for the construction of a new assembly of dog chr9 (50 Mb), 

were performed using BLAST and BLAT tools, available for free at NCBI and UCSC 

genome browsers, respectively [Altschul et al., 1990; Kent et al., 2002]. In the case of the 

analysis of the whole dog chromosome 9, a 1,000 bp region for approximately every 100 

kb has been utilized to manually carry out the comparison between man and dog. 

FISH 

FISH experiments were performed, as reported by De Lorenzi et al. [2014]. When three 

probes were used in the same experiments, one probe was labelled with two different 

fluorochromes, and the yellow colour was assigned. The BACs (Bacterial Artificial 

Chromosomes) used as probes belong to CH82 library (Chori), and are reported in Table 

1; their schematic positions are also presented in Figure 1. 

Dog cell cultures 

Peripheral blood samples were collected from several dogs to obtain the prometaphase 

stage. Chromosome preparations were obtained from a 72 h lymphocyte cell culture in PB-

MAX™ Karyotyping Medium (Gibco), according to a standard procedure [Iannuzzi and Di 

Berardino, 2008]. 

 

RESULTS 

In silico studies 

Using several in silico comparative analyses, we produced a new sequence of the SOX9 

locus in dog, which was derived by the combination of CF9 16,475,722–17,962,968 region 

and CF9 7,937.692–8,275,049 (Figure 2 and Table 2). This 1,824,605 bp long sequence 

(Supplementary Information 1) is homolog to that present in the other species. Considering 

this new assembly, the dog region orthologous to the minimal human RevSex region (73-



Kb) was found to be located at 662 Kb at the 5’ end of the SOX9 gene, which is 

comparable with what was observed in humans and the other species considered (Table 

3). Conservation analysis performed using Mulan software along the 73-Kb genomic 

region revealed a different highly conserved region. In this analysis, we discarded the 

information about gorilla, chimp, and rhesus due their high similitude with the human 

genome; consequently, only seven species were retained. Supplementary Figure 1 

presents the ECRs with a similitude equal to or higher than 95. 

A search for the conserved transcription factor evidenced a certain number of conserved 

sites (not shown). Among these conserved sites, the only one that perfectly conserved the 

SRY binding site was within the 4461–4472-bp human RevSex region, corresponding to 

69,531,621–69,531,632 genomic region of the hg19 genome assembly; the positions on 

the other genome assembly are reported in Table 4. Furthermore, no SNPs were found in 

this human region, suggesting a specific role for this sequence of bases. Comparative 

analysis, using VISTA tool, considering the whole desert region of humans and dogs, 

showed that the RevSex region, in its complete length, was not the only well-conserved 

region in the desert region (Supplementary Figure 2).  

We also performed a preliminary bioinformatic analysis, as reported in the Materials and 

Methods section, to observe the chromosome 9 dog assembly in comparison with the 

hg19 human assembly. As reported in supplementary Figure 3, many discrepancies were 

noted, and further experiments, including FISH, re-sequencing or more detailed 

bioinformatics approaches, are needed to confirm or discard these discrepancies and 

consequently determine the evolutionary rearrangements. 

FISH studies 

The assembly of dog chromosome 9 showed the presence of four gaps with no clone 

bridge; the positions of these gaps are presented in Table 5. As shown in Figure 1, three of 

these gaps were just around SOX9, whereas the last one was found to be very distal (>39 



Mb). SOX9 gene was included between Gaps 1 and 2, which were separated by 1.5 Mb. 

By using several BACs as probes for FISH experiments, we observed that this assembly 

was probably incorrect. 

By BACs 104H05 and 195H24, we verified that the orientation of the ‘blue’ contig (Figure 

1b) was inverted with respect to that reported in the genome assembly (Figure 3a), with 

195H24 that was clearly more centromeric than 104H05. Moreover, the observation of two 

distinct FISH signals was compatible with the distance reported in the genome assembly, 

of more than 8 MB. FISH experiments with 297F12 and 195H24 confirmed that the ‘blue’ 

contig was inverted, since the two BACs co-localized in the same genomic region, in 

contrast to what was reported in the genome assembly, where they resulted to be at a 

distance of 9.3-Mb (Figure 3b). The orientation and position of the ‘green’ contig (Figure 

1b), which included the SOX9 gene, were more difficult to verify due to its short length (1.5 

Mb). To increase the experiment’s resolution, we performed interphase FISH, using three 

BACs: 297F12, 240J07, and 195H24, which showed that the order of the BACs on the dog 

genome was 240J07-297F12-195H24 (yellow-red-green in Figure 3b). However, it was 

impossible to identify the centromere and telomere positions; thus, considering the order of 

the three BACs shown in Figure 3b, two hypotheses were considered (Figure 3e), with the 

first one appearing more reliable due to the co-localization of 195H24 and 297F12 (Figure 

3c). Further experiments to test the orientation of the pink fragment (Figure 1b) by BACs 

7K11 and 523D12 (Figure 3d) confirmed the proposed genome assembly. 

 

DISCUSSION 

In humans, the SOX9 gene is preceded by a large region without any protein-coding 

genes, the so-called SOX9 desert region; indeed, the closest gene at its 5’, KCNJ2, is at a 

distance of 1.9 Mb. This genomic assembly was found to be maintained in several species 

(Table 2), but not in dogs (canFam2), where the KCNJ2 gene was determined to be about 



8 Mb far from the SOX9, and, together to a large part of the human homolog desert region, 

at its 3’ end.  

In the present study, we report on a new assembly of this region in dogs. By FISH and in 

silico analysis, we could demonstrate that it has a complete homology with the human 

region (Figure 2). 

The availability of the correct dog desert region assembly allows us to perform 

comparative analyses to identify the SOX9 regulatory regions. In this context, the dog is a 

very interesting species, because it shows abnormal sexual development caused by SOX9 

alterations, comparable with those described in humans. Moreover, in humans, 

chromosomal rearrangements within the desert region can result in different congenital 

malformations. Although a clear genotype-phenotype relation is missing, each type of 

malformation correlates rather well with the localization of CNV/translocations in a specific 

portion of the desert region (Figure 3 in Vetro et al., [2014]), suggesting that within each 

portion, regulatory elements are located, switching on and off the gene in a tissue-and 

time-specific sequence, in order to ensure normal embryo development. The homology of 

the desert region among different mammalian species, including dogs, suggests that the 

sequence of these elements obeys a successful programme of differentiation. As 

presented in Supplementary Figure 2, this genomic region shows the presence of several 

highly conserved portions, among which the so-called RevSex region, as defined by the 

identification of duplications at 500kb far from the SOX9 5’ in about 10% of the SRY-

negative XX males [Vetro et al., 2014]. The minimal overlapping region among these 

subjects is of 73-Kb. Comparative analysis of this region in seven different mammalian 

species (Supplementary Figure 1) revealed the presence of several conserved portions, 

with four of them sharing high homology. This fact could be interpreted as the importance 

of these regions in different species. Among these conserved sites, one, corresponding to 

69,531,621–69,531,632 genomic region of the hg19 genome assembly, showed the same 



consensus sequence of the SOX proteins binding sites (Table 4). A specific role for that 

sequence is also strengthened by the absence of SNPs (Single Nucleotide 

Polymorphisms) in the human population within this consensus. We might tentatively 

hypothesize that this consensus sequence represents the DNA binding site for the protein 

encoded by SRY. In fact, 46,XY DSD-associated deletions, including the RevSex region, 

have been reported in humans (red bars in Figure 3 of Vetro et al., [2014]). The Sox9 

expression in the Sertoli cell precursors of the developing gonads closely follows that of 

the Sry gene [Sekido et al., 2004] that, at least in mouse, promotes the Sox9 gene 

expression in synergy with SF1, via a regulatory element—the so-called TESCO, TEstis-

Specific enhancer Core Sequence—located upstream of Sox9 [Sekido et al., 2008]. 

However, the importance of TESCO in other species remains to be demonstrated. Till date, 

in humans, the analysis of many XY DSD patients did not show any mutation in TESCO 

[Georg et al., 2010].  

Further experiments involving ChIP or mutation analyses in XY sex reversal patients could 

clarify the relevance of this SOX proteins binding site in the SOX9 activation process. 

This hypothetical binding site for SRY, and subsequently for most of the SOX genes, might 

represent a good target for mutation analysis in DSD subjects. It should be emphasized 

that the role of the RevSex region in gonadal differentiation is attenuated by the finding 

that in dog, it is contained within a CNV, suggesting that its deletion/duplication does not 

lead to alterations of embryonic development. This might indicate that the regulatory 

mechanisms of the expression of SOX9 are different from those acting in humans, making 

this region dispensable in the dog. However, it is clear that RevSex cannot be the only 

actor in the activation of SOX9 in the precursor cells of the gonad. This is suggested by 

the incomplete penetrance of RevSex duplications in human XX subjects that are reported 

as infertile males, or with different degrees of genital ambiguity, or even as fertile females 

[Benko et al., 2011]. Also, we should not forget the role of NR5A1, well demonstrated by 



the many correlations between mutations and abnormalities in the developmental and 

gonadal function in both the XY and XX backgrounds [Achermann et al., 1999; Lourenco 

et al., 2009]. It will be also interesting to look for the DNA binding site of other transcription 

factors, such as NR5A1, DMRT1 or WT1. The picture that emerges from all these data is 

that of a mechanism of expression finely tuned by several factors, which leave ample room 

for a wide range of phenotypic effects, from a normal development at one extreme to a 

total sex reversal at the other. The detection of intermediate phenotypes, such as lower 

fertility, hypospadias, and curved penis, are largely overlooked in the dog, making difficult 

a reliable genotype-phenotype relationship between humans and dogs. The detection of all 

the DNA binding sites for all the transcription factors modulating the expression of SOX9 

(NR5A1, DMRT1, WT1) will largely clarify how gonadal differentiation occurs. 

In conclusion, we have defined a new assembly of the desert region upstream of SOX9 in 

dog, which perfectly fits with the one detected in other mammalian species, including 

humans. We have also highlighted a few conserved sequences that might play a 

regulatory function, at least in gonadal development, and whose real role may now be 

investigated in those individuals for which the molecular basis of their abnormal gonadal 

differentiation/function has not yet been discovered. 
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TABLES 

 

Table 1 

List and genomic position on CanFam3 genome assembly of used BACs as probes 

in FISH experiments. 

 

BAC Start (bp) End (bp) Notes 

195H24 17,609,124 17,778,444 RevSex region 

104H05   9,165,409   9,349,831 5’ blue contig 

297F12   8,169,940   8,361,578 Sox9 gene 

240J07   8,361,178   8,514,176 3’ Sox9 gene 

523D12   7,175,358   7,467,663 3’ pink contig 

7K11      283,933      491,656 5’ pink contig 

 

Table 2 

Sox9 desert region features 

Species Assembly Chr KCNJ2 TGA SOX9 ATG Strand Dimension (bp) 

Human hg19 17 68,172,464    70,117,533    + 1,945,069    

Rabbit oriCun2 19 53,923,203    55,820,838    + 1,897,635    

Mouse mm10 11 111,073,070    112,782,585    + 1,709,515    

Chimp panTro4 17 68,967,727    70,943,563    + 1,975,836    

Rhesus rheMac3 16 67,559,318    69,517,462    + 1,958,144    

Cattle bosTau6 19 61,190,245    59,494,539    - 1,695,706    

Pig susScr2 12 8,647,274    6,871,238    - 1,776,036    

Horse equCab2 11 10,866,408    9,239,727    - 1,626,681    

Gorilla gorGor3 5 13,247,412    11,279,102    - 1,968,310   

Dog canFam3 9 16,475,722    17,962,968    + 1,487,247    

   7,937,692 8,275,049    + 337,358    

      1,824,605   

 
 
 
 
 
 
 
 
 
 
 
 



 
 
Table 3 

RevSex 73 Kb region features 

Species Assembly Chr Start End Strain Length 
(bp) 

SOX9 ATG 
distance (bp) 

Human hg19 17 69,527,161 69,600,161 + 73,000 517,372 

Rabbit oriCun2 19 55,250,453 55,325,677 + 75,224 495,161 

Mouse mm10 11 112,254,026 112,332,766 + 78,740 449,819 

Chimp panTro4 17 70,339,315 70,413,571 + 74,256 529,992 

Rhesus rheMac3 16 68,920,845 69,001,073 + 80,228 516,389 

Cattle bosTau6 19 60,018,541 59,958,205 - 60,336 463,666 

Pig susScr2 12 7,572,787 7,510,046 - 62,741 638,808 

Horse equCab2 11 9,732,241 9,675,198 - 57,043 435,471 

Gorilla gorGor3 5 11,873,051 11,799,505 - 73,546 520,403 

dog canFam3 9 17,573,722 17,638,252 + 64,531 662,074 

 
 
Table 4 

SRY conserved binding sites 

Species Strand Start* End* Sequence Assembly Chr Start End 
Human + 4461 4472 acaAACAAtaag hg19 17 69,531,621 69,531,633 
Pig - 3491 3502 acaAACAAtaag susScr2 12 7,569,286 7,569,297 
Cattle - 3400 3411 acaAACAAtaag bosTau6 19 60,015,131 60,015,142 
Horse - 3991 4002 ataAACAAtaag equCab2 11 9,728,240 9,728,251 
Mouse + 4761 4772 acaAACAAtaag mm10 11 112,258,786 112,258,797 
Rabbit + 4802 4813 acaAACAAtaag oriCun2 19 55,255,254 55,255,265 
Dog - 4380 4391 acaAACAAtaag canFam3 9 17,633,860 17,633,872 

 
* respect to RevSex lenght sequence reported in Table 3 
 
 
Table 5 

Position of no bridge gaps in dog chromosome 9 canFam3 genome assembly 

Gap Start End 

Gap 1 7,516,264 7,517,263 

Gap 2 8,956,386 8,957,385 

Gap 3 18,187,916 18,188,917 

Gap 4 47,774,103 47,775,102 

 
 

 

 



FIGURE LEGENDS 

 

FIGURE 1 

Schematic position of the gaps and positions of relevant genomic features. 

Whole canFam2 chromosome 9, as noted in the UCSC web browser (a) Red arrows show 

the position of the four gaps. Blue arrow indicates the SOX9 gene position. The coloured 

lines represent the contigs presented in (b). (b) Representation of the three involved 

contigs in FISH analyses (not in scale) cen: centromere; RevSex: RevSex human homolog 

region. The position of the BACs used in FISH experiments, as well as those of the 

considered gaps, are also reported. The three contigs are displayed with three different 

colours (pink, green and blue) in order to facilitate the interpretation of FISH results. The 

exact positions of the BAC are reported in Table 1, whereas the positions of the genomic 

gaps are reported in Table 5. 

 

FIGURE 2  

Reconstruction of dog SOX9 desert region.  

The position of the genomic fragment, used to build the dog SOX9 5’ desert genomic 

region, is shown. (a) Human hg19 genomic organization; (b) Dog canFam 2 genomic 

organization; (c) Proposed dog desert region. Gene position (in Mb) in human hg19 

assembly (start-end-strain): KCNJ2 (68,165-68,176-plus), RevSex (69,527-69,600-plus), 

SOX9 (70,117-70,122-plus), and SLC39A11 (70,642-71,088-minus). Gene position (in Mb) 

in dog canFam3 assembly (start-end-strain): KCNJ2 (16,468-16,475-plus), RevSex 

(17,573-17,638-plus), SOX9 (8,275-8,278-plus), and SLC39A11 (7,420-7,483-plus).  

 

 

 



FIGURE 3 

FISH experiments. 

The results of the FISH experiments are shown. (a–d) The colour of the BAC name 

corresponds to the probe colour. (e) Two hypotheses of BAC arrangement on CF9. 



 



 



 


