621 research outputs found
ROYALE: A Framework for Universally Composable Card Games with Financial Rewards and Penalties Enforcement
While many tailor made card game protocols are known, the vast majority of those suffer from three main issues: lack of mechanisms for distributing financial rewards and punishing cheaters, lack of composability guarantees and little flexibility, focusing on the specific game of poker. Even though folklore holds that poker protocols can be used to play any card game, this conjecture remains unproven and, in fact, does not hold for a number of protocols (including recent results). We both tackle the problem of constructing protocols for general card games and initiate a treatment of such protocols in the Universal Composability (UC) framework, introducing an ideal functionality that captures general card games constructed from a set of core card operations. Based on this formalism, we introduce Royale, the first UC-secure general card games which supports financial rewards/penalties enforcement. We remark that Royale also yields the first UC-secure poker protocol. Interestingly, Royale performs better than most previous works (that do not have composability guarantees), which we highlight through a detailed concrete complexity analysis and benchmarks from a prototype implementation
Differentially Private Billing with Rebates
A number of established and novel business models are based on fine grained billing, including pay-per-view, mobile messaging, voice calls, pay-as-you-drive insurance, smart metering for utility provision, private computing clouds and hosted services. These models apply fine-grained tariffs dependent on time-of-use or place of-use to readings to compute a bill. We extend previously proposed billing protocols to strengthen their privacy in two key ways. First, we study the monetary amount a customer should add to their bill in order to provably hide their activities, within the differential privacy framework. Second, we propose a cryptographic protocol for oblivious billing that ensures any additional expenditure, aimed at protecting privacy, can be tracked and reclaimed in the future, thus minimising its cost. Our proposals can be used together or separately and are backed by provable guarantees of security. © 2011 Springer-Verlag
Compact E-Cash and Simulatable VRFs Revisited
Abstract. Efficient non-interactive zero-knowledge proofs are a powerful tool for solving many cryptographic problems. We apply the recent Groth-Sahai (GS) proof system for pairing product equations (Eurocrypt 2008) to two related cryptographic problems: compact e-cash (Eurocrypt 2005) and simulatable verifiable random functions (CRYPTO 2007). We present the first efficient compact e-cash scheme that does not rely on a random oracle. To this end we construct efficient GS proofs for signature possession, pseudo randomness and set membership. The GS proofs for pseudorandom functions give rise to a much cleaner and substantially faster construction of simulatable verifiable random functions (sVRF) under a weaker number theoretic assumption. We obtain the first efficient fully simulatable sVRF with a polynomial sized output domain (in the security parameter).
PRCash: Fast, Private and Regulated Transactions for Digital Currencies
Decentralized cryptocurrencies based on blockchains provide attractive features, including user privacy and system transparency, but lack active control of money supply and capabilities for regulatory oversight, both existing features of modern monetary systems. These limitations are critical, especially if the cryptocurrency is to replace, or complement, existing fiat currencies. Centralized cryptocurrencies, on the other hand, provide controlled supply of money, but lack transparency and transferability. Finally, they provide only limited privacy guarantees, as they do not offer recipient anonymity or payment value secrecy.
We propose a novel digital currency, called PRCash, where the control of money supply is centralized, money is represented as value-hiding transactions for transferability and improved privacy, and transactions are verified in a distributed manner and published to a public ledger for verifiability and transparency. Strong privacy and regulation are seemingly conflicting features, but we overcome this technical problem with a new regulation mechanism based on zero-knowledge proofs. Our implementation and evaluation shows that payments are fast and large-scale deployments practical. PRCash is the first digital currency to provide control of money supply, transparency, regulation, and privacy at the same time, and thus make its adoption as a fiat currency feasible
Efficient noninteractive certification of RSA moduli and beyond
In many applications, it is important to verify that an RSA public key (N; e) speci es a
permutation over the entire space ZN, in order to prevent attacks due to adversarially-generated
public keys. We design and implement a simple and e cient noninteractive zero-knowledge
protocol (in the random oracle model) for this task. Applications concerned about adversarial
key generation can just append our proof to the RSA public key without any other modi cations
to existing code or cryptographic libraries. Users need only perform a one-time veri cation of
the proof to ensure that raising to the power e is a permutation of the integers modulo N. For
typical parameter settings, the proof consists of nine integers modulo N; generating the proof
and verifying it both require about nine modular exponentiations.
We extend our results beyond RSA keys and also provide e cient noninteractive zero-
knowledge proofs for other properties of N, which can be used to certify that N is suitable
for the Paillier cryptosystem, is a product of two primes, or is a Blum integer. As compared to
the recent work of Auerbach and Poettering (PKC 2018), who provide two-message protocols for
similar languages, our protocols are more e cient and do not require interaction, which enables
a broader class of applications.https://eprint.iacr.org/2018/057First author draf
TAM receptor tyrosine kinase function and the immunopathology of liver disease.
Tyro3, Axl, MERTK (TAM) receptor tyrosine kinases are implicated in the regulation of the innate immune response through clearance of apoptotic cellular debris and control of cytokine signaling cascades. As a result they are pivotal in regulating the inflammatory response to tissue injury. Within the liver, immune regulatory signaling is employed to prevent the overactivation of innate immunity in response to continual antigenic challenge from the gastrointestinal tract. In this review we appraise current understanding of the role of TAM receptor function in the regulation of both innate and adaptive immunity, with a focus on its impact upon hepatic inflammatory pathology
Quantum protocols for anonymous voting and surveying
We describe quantum protocols for voting and surveying. A key feature of our
schemes is the use of entangled states to ensure that the votes are anonymous
and to allow the votes to be tallied. The entanglement is distributed over
separated sites; the physical inaccessibility of any one site is sufficient to
guarantee the anonymity of the votes. The security of these protocols with
respect to various kinds of attack is discussed. We also discuss classical
schemes and show that our quantum voting protocol represents a N-fold reduction
in computational complexity, where N is the number of voters.Comment: 8 pages. V2 includes the modifications made for the published versio
Efficient UC Commitment Extension with Homomorphism for Free (and Applications)
Homomorphic universally composable (UC) commitments allow for the sender to reveal the result of additions and multiplications of values contained in commitments without revealing the values themselves while assuring the receiver of the correctness of such computation on committed values.
In this work, we construct essentially optimal additively homomorphic UC commitments from any (not necessarily UC or homomorphic) extractable commitment. We obtain amortized linear computational complexity in the length of the input messages and rate 1.
Next, we show how to extend our scheme to also obtain multiplicative homomorphism at the cost of asymptotic optimality but retaining low concrete complexity for practical parameters.
While the previously best constructions use UC oblivious transfer as the main building block, our constructions only require extractable commitments and PRGs, achieving better concrete efficiency and offering new insights into the sufficient conditions for obtaining homomorphic UC commitments.
Moreover, our techniques yield public coin protocols, which are compatible with the Fiat-Shamir heuristic.
These results come at the cost of realizing a restricted version of the homomorphic commitment functionality where the sender is allowed to perform any number of commitments and operations on committed messages but is only allowed to perform a single batch opening of a number of commitments.
Although this functionality seems restrictive, we show that it can be used as a building block for more efficient instantiations of recent protocols for secure multiparty computation and zero knowledge non-interactive arguments of knowledge
Lattice-based Group Signature Scheme with Verifier-local Revocation
International audienceSupport of membership revocation is a desirable functionality for any group signature scheme. Among the known revocation approaches, verifier-local revocation (VLR) seems to be the most flexible one, because it only requires the verifiers to possess some up-to-date revocation information, but not the signers. All of the contemporary VLR group signatures operate in the bilinear map setting, and all of them will be insecure once quantum computers become a reality. In this work, we introduce the first lattice-based VLR group signature, and thus, the first such scheme that is believed to be quantum-resistant. In comparison with existing lattice-based group signatures, our scheme has several noticeable advantages: support of membership revocation, logarithmic-size signatures, and weaker security assumption. In the random oracle model, our scheme is proved to be secure based on the hardness of the SIVP_{SoftO(n^{1.5})}$ problem in general lattices - an assumption that is as weak as those of state-of-the-art lattice-based standard signatures. Moreover, our construction works without relying on encryption schemes, which is an intriguing feature for group signatures
Efficient distributed tag-based encryption and its application to group signatures with efficient distributed traceability
In this work, we first formalize the notion of dynamic group signatures with distributed traceability, where the capability to trace signatures is distributed among n managers without requiring any interaction. This ensures that only the participation of all tracing managers permits tracing a signature, which reduces the trust placed in a single tracing manager. The threshold variant follows easily from our definitions and constructions. Our model offers strong security requirements. Our second contribution is a generic construction for the notion which has a concurrent join protocol, meets strong security requirements, and offers efficient traceability, i.e. without requiring tracing managers to produce expensive zero-knowledge proofs for tracing correctness. To dispense with the expensive zero-knowledge proofs required in the tracing, we deploy a distributed tag-based encryption with public verifiability. Finally, we provide some concrete instantiations, which, to the best of our knowledge, are the first efficient provably secure realizations in the standard model simultaneously offering all the aforementioned properties. To realize our constructions efficiently, we construct an efficient distributed (and threshold) tag-based encryption scheme that works in the efficient Type-III asymmetric bilinear groups. Our distributed tag-based encryption scheme yields short ciphertexts (only 1280 bits at 128-bit security), and is secure under an existing variant of the standard decisional linear assumption. Our tag-based encryption scheme is of independent interest and is useful for many applications beyond the scope of this paper. As a special case of our distributed tag-based encryption scheme, we get an efficient tag-based encryption scheme in Type-III asymmetric bilinear groups that is secure in the standard model
- …