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Abstract 36 
TAM receptor tyrosine kinases are implicated in the regulation of the innate immune 37 
response through clearance of apoptotic cellular debris and control of cytokine 38 
signaling cascades. As a result they are pivotal in regulating the inflammatory 39 
response to tissue injury. Within the liver, immune regulatory signaling is employed to 40 
prevent the over-activation of innate immunity in response to continual antigenic 41 
challenge from the gastrointestinal tract. In this review we appraise current 42 
understanding of the role of TAM receptor function in the regulation of both innate 43 
and adaptive immunity, with a focus on its impact upon hepatic inflammatory 44 
pathology.  45 
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Introduction  63 
The TAM receptor tyrosine kinases (Tyro3, Axl, MERTK) are a relatively recently 64 
discovered family of signaling molecules with diverse biological roles. Initially cloned 65 
from leukaemic cancer cell lines, they are expressed in a variety of tissues including 66 
the hematopoietic, nervous and reproductive systems (21, 28, 29, 31, 55). Axl is 67 
widely expressed in the human body(1), whilst MERTK is found in hematopoietic 68 
cells and in specialized epithelia including retinal pigmental epithelium and Sertoli 69 
cells (12, 21, 77). Tyro 3 is strongly expressed in central nervous system (33, 41). In 70 
common with other receptor tyrosine kinase (RTK) families, downstream signaling 71 
involves interaction with growth factor pathways, making them proto-oncogenic and 72 
over-expressed in many human cancers (4, 23, 35). The family is distinctive in a 73 
number of ways, including a unique ligand-receptor interaction and important 74 
regulatory roles in innate and adaptive immunity (74). In this review we appraise the 75 
current understanding of TAM receptor signaling in inflammatory pathologies, 76 
highlighting our current understanding of their role in the immunopathology of liver 77 
disease. 78 
 79 
TAM receptor function in tissue development and homeostasis 80 
TAM signaling plays a role both in tissue embryogenesis and homeostasis through 81 
clearance of apoptotic cells (52). TAM receptors expressed on specialized epithelial 82 
cells and phagocytes bind to phosphatidylserine (PtdSer) on the outer phospholipid 83 
membrane of apoptotic cells via an intermediary association with their respective 84 



ligands (61). This interaction enables selective engulfment and uptake of apoptotic 85 
cells. Recent studies in rodents implicate MERTK in this process. Retinal pigment 86 
epithelial cells in MERTK knockout mice fail to clear apoptotic cells and cellular 87 
debris, resulting in prolonged inflammation, fibrosis and retinal degeneration (49) 88 
(13). MERTK has also been reported to be important in mammary epithelial glandular 89 
involution after lactation (59). In a similar manner, TAM signaling in Sertoli cells is 90 
required to help clear apoptotic remnants of meiosis in the testes: these accumulated 91 
in male TAM knockout mice, resulting in inflammatory damage to seminiferous 92 
tubules and infertility (68) (77). Within the central nervous system of mice, microglial 93 
cells lacking MERTK were unable to clear ineffective synaptic connections, impairing 94 
hippocampal development and propagating neuronal damage (30).  95 
 96 
TAM receptor ligands 97 
The two most studied ligands of TAM receptors are Gas6 and Protein S (Pros1). 98 
They share over 40% sequence homology and depend upon vitamin K for binding to 99 
TAM receptors (40). Protein S is a regulatory component of the coagulation cascade; 100 
however this function does not involve TAM receptors (6) (26) (58). It is produced by 101 
hepatocytes, endothelial cells and in those tissues mentioned above which utilize 102 
MERTK mediated clearance of apoptotic cells (6). Gas6 is expressed primarily in 103 
vascular smooth muscle and endothelial cells. In vitro studies have shown that Gas6 104 
can bind and activate Axl without PtdSer, indicating a function distinct from apoptotic 105 
cell clearance (72). In steady state, serum concentrations are low (<0.2nM) but rise 106 
dramatically during acute stress or tissue injury such as sepsis (14, 47, 73). 107 
 108 
Galectin-3 has recently been identified as a TAM receptor ligand. Amongst diverse 109 
roles in an array of cellular processes, its expression is elevated following tissue 110 
damage, including in cardiac myocytes after myocardial infarction and in both acute 111 
and chronic liver injury (24) (27) (43) (70). It is produced by macrophages and 112 



contributes to fibrogenesis through recruitment of fibroblasts to sites of tissue 113 
damage. Galectin-3 employs a number of downstream signaling cascades and the 114 
distinct role of TAM signaling within this repertoire is unclear; at present it is known to 115 
facilitate phagocytosis via MERTK (7). That Gas6 and Galectin-3, both TAM ligands, 116 
are frequently up-regulated after tissue injury is noteworthy, suggesting a role for 117 
TAM signaling in response to tissue damage (14, 24). 118 
 119 
TAM signaling in immune regulation 120 
Perhaps the most prominent aspect of TAM receptor function is in regulation of 121 
immunity. TAM receptor loss results in exaggerated activation and ineffective 122 
resolution responses, resulting in excessive inflammatory tissue damage. This has 123 
been demonstrated in experimental models of both sterile and pathogen induced 124 
inflammation. In endotoxemia models, MERTK knockout mice almost uniformly 125 
succumbed to septic shock and died as a result of tissue damage mediated by 126 
excessive levels of TNF-α and IL-1 (9). In mice, bleomycin induced lung injury was 127 
attenuated when surface MERTK expression on macrophages was enhanced. Anti-128 
inflammatory mediators (TGF-β and hepatocyte growth factor HGF) are more 129 
abundant whilst TNF-α and IL-1β expression is reduced (34).  130 
 131 
It is therefore evident that TAM signaling regulates innate immune responses through 132 
the modulation of cytokine production. Rothlin et al. demonstrated that pro-133 
inflammatory cytokine production by murine dendritic cells after Toll-like receptor 134 
(TLR) activation is attenuated by TAM receptor signaling, specifically MERTK and 135 
Axl. This is mediated by SOCS1 and 3 (suppressors of cytokine signaling); inhibitory 136 
proteins that act at various points in the TLR signaling cascade. Increased SOCS1 137 
and 3 expression occurs downstream of TAM receptor activation. The authors 138 
demonstrate a dynamic feedback loop in which the initial burst of cytokines produced 139 



as a product of TLR signaling bind to their respective receptors and activate 140 
transcription factor STAT1. As well as promoting further pro-inflammatory cytokine 141 
production, STAT1 also induces Axl. In association with Gas6 or Pros1, Axl interacts 142 
directly with cytokine receptor interferon associated receptor (IFNAR). This complex 143 
of proteins appears to differentially activate STAT1, redirecting its downstream 144 
genetic targets towards SOCS1 and 3 and acting as a ‘brake’ for cytokine production 145 
after TLR activation by pathogens (56).  146 
 147 
TAM signaling in macrophages skews the cytokine profile in favor of wound healing 148 
and resolution of inflammation after uptake of apoptotic cells. MERTK mediated 149 
efferocytosis promotes expression of ‘Th2’ like cytokines including IL-4, IL-10 and 150 
TGF-β (15). An in vitro study in mice demonstrated that this is dependent upon 151 
inhibition of NF-κB and activation of the PI3K pathway (62). The ingested products of 152 
apoptosis themselves induce further MERTK expression: cholesterol metabolites 153 
from cell wall fragments activate the liver X receptor, which binds and activates the 154 
MERTK promoter (45). In addition, IL-10 acts in an autocrine manner to induce 155 
further MERTK expression and propagate an anti-inflammatory response to tissue 156 
damage (79). Gas6 and Pros1 are secreted in an autocrine manner by macrophages 157 
and dendritic cells in response to both MERTK and Axl activation, helping to amplify 158 
TAM signaling at sites of inflammation (56). 159 
 160 
Differential expression of TAM receptors in different immune cell types may indicate 161 
specificity in biological function. Zagorska et al. noted more abundant expression of 162 
Axl in murine dendritic cells, whilst MERTK was more commonly expressed in 163 
macrophages. They report an increase in Axl expression in response to TLR ligands 164 
lipopolysaccharide and poly I:C, whereas MERTK expression was induced by the 165 
uptake of apoptotic cells and IL-10 as described above. These observations may 166 



support a model in which MERTK signaling enables phagocytic clearance in 167 
homeostatic settings, whilst Axl signaling functions in sentinel antigen presenting 168 
cells in response to acute inflammatory insults (76).  169 
 170 
These immune regulatory functions are exploited by pathogens in order to evade 171 
immune recognition. Enveloped viruses such as dengue and Ebola express PtdSer 172 
on their outer membranes in a process termed ‘apoptotic mimicry’ (44), hijacking 173 
MERTK and Axl signaling pathways to enable their uptake by antigen presenting 174 
cells and suppress the innate anti-viral response (42, 65). In a mouse model of 175 
respiratory syncytial virus (RSV) and H1NI influenza infection, both MERTK and Axl 176 
expression was increased following viral exposure. Their increased expression 177 
directly attenuated IFN-β production whilst promoting Th2 type responses. Similarly, 178 
in response to fungal (Aspergillus) infection, Axl up-regulation in macrophages 179 
resulted in an inhibition of interferon-γ mediated NK and T cell responses(63).  180 
 181 
TAM signaling and autoimmunity 182 
Autoimmunity is the result of inappropriate activation of adaptive immunity in 183 
response to self antigen, characterized by hyperactive inflammatory responses in 184 
antigen presenting cells and a failure to inhibit the formation of autoreactive T and B 185 
cell clones (57). It is perhaps unsurprising that TAM signaling has been implicated in 186 
autoimmunity in view of the established significance of TAM receptors in both antigen 187 
presenting cells and clearance of self-antigen in the form of apoptotic cell remnants.  188 
 189 
Support for this association can be found in mouse models. A profound poly-190 
autoimmune syndrome resembling systemic lupus erythematosus (SLE) develops in 191 
TAM triple (MERTK-/-, AxL-/-, Tyro3-/-) knockout mice, characterized by elevated titers 192 
of autoantibody, uncontrolled B and T cell proliferation and accumulation of 193 
lymphocytes in secondary lymphoid organs (38). In humans with SLE there is 194 



defective clearance of autoreactive lymphocytes in the germinal centers of lymph 195 
nodes (18) by tingible body macrophages that are, in mice, known to express 196 
MERTK (51). Furthermore Pros1 is frequently deficient in SLE (and in other 197 
autoimmune pathologies including ulcerative colitis), suggesting a role for reduced 198 
TAM signaling in its pathogenesis (20) (67) (32).  199 
 200 
Recent work has highlighted a further role for TAM signaling at the interface of innate 201 
and adaptive immunity. Cytotoxic T cells in mice express Pros1 and externalize 202 
patches of PtdSer, thereby activating MERTK on the surface of antigen presenting 203 
cells to dampen pro-inflammatory cytokine production and antigen specific responses 204 
(10).    205 
 206 
TAM receptors and anti-tumor immunity 207 
TAM mediated immune regulation is also important in the context of anti-tumor 208 
immunity. Classically this is facilitated by NK cells, which are primed to delete 209 
neoplastic cells indiscriminately (66). In addition, tumor associated antigens exposed 210 
early in tumor development can generate effector CD8+ T cells (16). With time, 211 
however, neoplasms evolve to evade host immunity, a process which involves 212 
employing a number of mechanisms including pro-resolution, regulatory signaling 213 
cascades of the TAM receptor kinase family (60).  214 
 215 
Work by Paolino et al has demonstrated the inhibitory role of TAM signaling in NK 216 
cell activation. In vitro assays of NK cell proliferation and production of interferon-217 
gamma were attenuated by stimulation with Gas6. In vivo, the addition of an 218 
unselective TAM inhibitor restored the cytotoxic activity of NK cells and reduced both 219 
tumor and metastatic burden (48).   220 
 221 



Within the tumor microenvironment, associated-associated macrophages interact 222 
intimately with tumor cells to promote tumor growth, invasion and systemic spread. 223 
This is achieved through evasion of host immunity. There is evidence that TAM 224 
signaling plays a key role in this harmful process: MERTK knockout mice display 225 
reduced tumor burden and fewer metastases in a xenograft model (11). Furthermore, 226 
Gas6 expression is elevated in a number of solid tumors (22, 75). A number of 227 
different micro-environmental cues stimulate MERTK expression in associated-228 
associated macrophages. These include ingested phagocytic material, the autocrine 229 
secretion of Gas6 and IL-10 and macrophage colony stimulating factor secreted by 230 
tumor cells. This promotes the production of anti-inflammatory cytokines including 231 
TGF-β and IL-10, which not only attenuate adaptive anti-tumor T cell immunity but 232 
also directly stimulate tumor cell survival (22). 233 
 234 
TAM receptor tyrosine kinase function in liver disease  235 
Steady state hepatic immunity 236 
The concept of liver ‘tolerance’ has been acknowledged since early observations in 237 
animal transplant models of spontaneous acceptance of donor allograft despite MHC 238 
class mismatch (8). Immune tolerance is advantageous for the liver, allowing it to 239 
manage the large antigen load received from the gastrointestinal tract. Hepatic 240 
tolerance is orchestrated by the resident population of antigen presenting cells, 241 
adapted epithelial cells and an enriched natural killer cell population (71).  242 
 243 
Given that TAM receptors are expressed in all of these cell types and contribute to 244 
immune regulation, their role in hepatic immunity warrants further investigation. All 245 
three TAM receptors have been identified in the livers of wild type mice. MERTK is 246 
expressed in Kupffer cells and sinusoidal endothelial cells but not in hepatocytes. Axl 247 
is expressed in all three cell types while Tyro 3 is restricted to resident macrophages 248 
(50).  249 



 250 
The most informative data on the role of TAM RTKs in hepatic immunity comes from 251 
the TAM triple knockout mouse. By six months of age it spontaneously develops an 252 
autoimmune hepatitis with rising transaminases and increasing titers of 253 
autoantibodies to smooth muscle antigen and antinuclear antigen. Histological 254 
analysis reveals an infiltration of autoreactive CD4+ T cells and circulatory 255 
macrophages. Hepatocytes have elevated pro-inflammatory cytokine expression, 256 
including IL-6, IL-1β, TNF-α and interferons through up-regulation of NF-κβ and 257 
interferon regulatory factor 3 (IRF3). This autoimmune phenotype was not seen when 258 
TAM knockout mice bone marrow was transplanted with wild type stem cells (50).  259 
 260 
These observations suggest that TAM receptors are vital for maintaining immune 261 
tolerance in the liver. Inappropriate activation of innate immunity by effective 262 
clearance of ‘self-antigen’ by efferocytosis and by dampening of pro-inflammatory 263 
cytokine cascades appears to prevent autoreactive T cell clone formation. It is not 264 
clear, however, if there is a direct effect on T cell activation and proliferation. 265 
 266 
Acute inflammation and liver injury  267 
MERTK may be protective in acute liver injury. In a murine model of hepatic 268 
ischemia, serum Gas-6 levels rose shortly after arterial ligation. Western blot analysis 269 
of homogenized liver extracts after ischemic insult showed a selective increase in 270 
phosphorylated MERTK over phosphorylated Axl, indicating preferential MERTK 271 
mediated signaling in this context. Gas-6 knockout mice showed higher mRNA levels 272 
of pro-inflammatory cytokines (IL-1A, TNFα) and more frequently succumbed to 273 
fulminant hepatic failure after only partial ischemic insult. Administration of 274 
recombinant Gas-6 restored protection from fulminant disease. It is not clear if this 275 
protective effect is mediated by TAM signaling in hepatic immune cells or in 276 



parenchyma, but the regulatory effect of Gas 6 administration on cytokine production 277 
was replicated in vitro in a surrogate Kupffer cell line (36).  278 
 279 
MERTK signaling has been studied in humans with both acute liver failure 280 
syndromes and acute on chronic liver failure (ACLF). A significant cause of morbidity 281 
in these patients is sepsis. Work undertaken by Bernsmeier et al. shows an 282 
expansion of MERTK positive circulating monocytes compared to healthy and 283 
cirrhotic controls. There is a concomitant increase in Gas-6, Pros-1 and galectin-3 as 284 
well as phosphorylated MERTK, indicating active MERTK signaling. This MERTK 285 
positive phenotype was reproduced in healthy monocytes incubated in plasma from 286 
ACLF patients. MERTK positive monocytes exhibit an attenuated response to 287 
endotoxin challenge, as previously described. Blockade of MERTK with a small 288 
molecule inhibitor in these monocytes restored TNFα and IL-6 production in 289 
response to lipopolysaccharide(5). 290 
 291 
The authors demonstrate that MERTK positive monocytes are more prone to 292 
transendothelial migration and propose a dynamic model in which monocytes are 293 
recruited to the inflamed liver, resulting in increased MERTK expression in response 294 
to hepatic injury. However in the setting of a systemic inflammatory response, 295 
endothelial dysfunction enables reverse transmigration of these monocytes into 296 
peripheral blood and local lymph nodes, potentially contributing to immune paresis 297 
and vulnerability to sepsis (5).  298 
 299 
Chronic inflammation and liver injury  300 
Although beneficial in the steady state and perhaps in response to acute liver injury, 301 
in models of chronic liver disease TAM receptor signaling is potentially deleterious. 302 
Activation of hepatic stellate cells (HSCs) is pivotal in the progression of liver injury 303 
(39). These cells secrete collagen and other extracellular matrix proteins in chronic 304 



liver disease, promoting fibrogenesis and cirrhotic transformation (3). Murine 305 
experimental models of chronic liver injury have confirmed the role of TAM receptor 306 
signaling in this process. HSC activation relies upon Gas-6 mediated activation of 307 
Axl, leading to up-regulation of signaling via AKT and NF-κβ in mice exposed to 308 
carbon tetrachloride. Transcription and translation of Axl was increased as well as 309 
activation of the downstream signaling in both liver macrophages and stellate cells 310 
(2, 17).  311 
 312 
In another mode of chronic liver injury, mice fed a choline deplete, ethionine 313 
supplemented diet developed steatohepatitis. Gas-6 deficient mice fed this diet 314 
showed a reduction in HSC activation and expression of TGF-β. Furthermore, onset 315 
of necroinflammation and steatosis was delayed compared with wild-type mice. 316 
Expression of TNF-α, IL-1β and macrophage chemotactic protein 1 (MCP-1) mRNA 317 
was reduced, with a concordant reduction in macrophage infiltration at 7 days (17).  318 
 319 
TAM receptor signaling has recently been studied in the context of chronic hepatitis 320 
C virus (HCV) infection. A strong interferon (IFN) response is predictive of viral 321 
eradication (19). Chronically infected HCV patients with prolonged activation of type 322 
I/III IFN signaling pathways and high baseline expression of downstream IFN-323 
stimulated genes (ISGs) prior to treatment are less likely to achieve sustained 324 
virological response (SVR). This is thought to be due to less vigorous further 325 
induction of ISGs upon commencing treatment. The mechanism for this phenomenon 326 
is not fully understood, however work by Read et al. suggests a role for Axl. In in vitro 327 
models and in vivo, Axl expression was up-regulated in chronically infected 328 
hepatocytes; furthermore those hepatocytes from patients with a ‘non-responder’ 329 
phenotype in chronic HCV showed higher Axl expression than ‘responders’. Axl 330 
expression was potently induced by interferons, and is mediated by a number of 331 



transcription factors including STAT1. In vitro hepatocyte Axl overexpression resulted 332 
in reduced STAT1 phosphorylation and subsequent ISG expression. This is 333 
illustrated in Figure 1. Taken together these data suggest that IFN induced Axl 334 
expression mediates a negative feedback loop, down-regulating IFN signaling in a 335 
similar manner to that elucidated previously by Rothlin et al. in dendritic cells (56). In 336 
hepatocytes this does not appear to be via SOCS1 and 3 but may be a direct effect 337 
of Axl on IFN signaling pathways (53) (54).  338 
 339 
In summary, TAM receptors and their ligands are widely expressed in the liver and 340 
contribute to hepatic immune regulation by preventing autoreactive T cell 341 
development in steady state. In response to injury, Gas-6 and MERTK mediate 342 
down-regulation of acute inflammatory cascades. However in the context of chronic 343 
inflammation, Axl signaling results in smoldering inflammation, fibrosis and reduced 344 
viral clearance. A schematic of these processes is summarized in Figure 2.  345 
 346 
Future prospects in hepatic TAM receptor research 347 
Current research into TAM receptor function is focused upon their roles within 348 
immune regulation and tumor biology. TAMs are widely over-expressed in most 349 
human cancers and their expression is associated with an aggressive phenotype and 350 
a higher burden of metastasis (46) (64) (69) (78). Evidence indicates activation of 351 
MERTK signaling is a mechanism that suppresses host anti-tumor immunity. Within 352 
the liver, Axl is overexpressed in murine hepatocellular carcinoma cell lines and is 353 
associated with a higher propensity to metastasize in vivo (25). Further 354 
understanding of TAM signaling in immune regulation in hepatocellular carcinoma 355 
(HCC) is required. Recent work has shown that hepatic tumor associated 356 
macrophages are ‘tolerized’ in vivo by tumor up-regulation of CD47 (37). It is 357 
possible that TAM receptor ligation by circulating Gas-6 in the tumor 358 
microenvironment may have similar, yet distinct effects upon tumor associated 359 



macrophages, as well as roles in modulating NK cells, CD4 + and CD8+ T cells to 360 
promote tumor progression. These adaptations may present opportunities for 361 
therapeutic intervention in HCC by restoring host anti-tumor immunity.  362 
 363 
Recent work has demonstrated the importance of TAM signaling following acute 364 
tissue injury, however its impact upon other hepatic inflammatory liver diseases 365 
remains unexplored. Further work to validate this in humans is required. In addition, 366 
studies investigating the role of TAM signaling in other immune-mediated hepatic 367 
inflammatory diseases are warranted. With an array of molecular inhibitors to 368 
individual TAM receptors and their ligands currently available, the possibility of 369 
targeted therapy for aberrant TAM signaling in liver disease is an exciting prospect.  370 
 371 
 372 
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Figure Legends 697 
 698 
Figure 1: Schematic representation of Axl regulation during HCV 699 
infection 700 
Axl is upregulated following HCV infection potentially through upregulation of 701 
IFN type I/III inflammatory signalling pathways in transformed hepatocytes. 702 
HCV-mediated Axl expression is mediated through a variety of transcription 703 
factors including STAT1/3, JNK and NF-κB. 704 
 705 
Figure 2: Schematic representation of TAM receptors and ligands in liver 706 
inflammatory pathologies 707 
1. Axl is found on quiescent hepatic stellate cells (HSC) and becomes 708 
upregulated along with Gas-6 during HSC activation following liver injury. 2. 709 
Gas-6 leads to phosphorylation of Axl and MerTK in HSC and promotes HSC 710 
survival and activation. Inhibition of Axl in HSC reduces activation, survival, 711 
scar formation and proliferation. 3. Circulating monocytes express MerTK and 712 
Axl and Kupffer cells express all TAM receptors and are the main producers 713 
of Gas-6 in normal livers. 4. Upon injury monocytes migrate across the 714 
endothelium into tissue, promoted by Gas-6. Gas-6 reduces LPS-induced 715 
secretion of TNF and IL-1β in macrophages and inhibition of MerTK in 716 
monocytes leads to a significant increase in LPS-induced TNF and IL-6 717 
production. 6. Liver progenitor cells express Axl and Gas-6, which is a survival 718 
factor for liver progenitor cells. 7. Hepatocytes express Axl but not MerTK or 719 
Tyro3. Gas-6 induces phosphorylation of Akt and protects hepatocytes from 720 
cell death.    721 
 722 
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