70 research outputs found

    The Neurorehabilitation Training Toolkit (NTT): A Novel Worldwide Accessible Motor Training Approach for At-Home Rehabilitation after Stroke

    Get PDF
    After stroke, enduring rehabilitation is required for maximum recovery, and ideally throughout life to prevent functional deterioration. Hence we developed a new concept for at-home low-cost motor rehabilitation, the NTT, an Internet-based interactive system for upper-limb rehabilitation. In this paper we present the NTT design concepts, its implementation and a proof of concept study with 10 healthy participants. The NTT brings together concepts of optimal learning, engagement, and storytelling to deliver a personalized training to its users. In this study we evaluate the feasibility of NTT as a tool capable of automatically assessing and adapting to its user. This is achieved by means of a psychometric study where we show that the NTT is able to assess movement kinematics—movement smoothness, range of motion, arm displacement and arm coordination—in healthy users. Subsequently, a modeling approach is presented to understand how the measured movement kinematics relate to training parameters, and how these can be modified to adapt the training to meet the needs of patients. Finally, an adaptive algorithm for the personalization of training considering motivational and performance aspects is proposed. In the next phase we will deploy and evaluate the NTT with stroke patients at their homes

    Quantifying cognitive-motor interference in virtual reality training after stroke: the role of interfaces

    Get PDF
    Globally, stroke is the second leading cause of death above the age of 60 years, with the actual number of strokes to increase because of the ageing population. Stroke results into chronic conditions, loss of independence, affecting both the families of stroke survivors but also public health systems. Virtual Reality (VR) for rehabilitation is considered a novel and effective low-cost approach to re-train motor and cognitive function through strictly defined training tasks in a safe simulated environment. However, little is known about how the choice of VR interfacing technology affects motor and cognitive performance, or what the most cost-effective rehabilitation approach for patients with different prognostics is. In this paper we assessed the effect of four different interfaces in the training of the motor and cognitive domains within a VR neurorehabilitation task. In this study we have evaluated the effect of training using 2-dimensional and 3-dimensional as well as traditional and natural user interfaces with both stroke survivors and healthy participants. Results indicate that 3-dimensional interfaces contribute towards better results in the motor domain at the cost of lower performance in the cognitive domain, suggesting the use 2-dimensional natural user interfaces as a trade-off. Our results provide useful pointers for future directions towards a cost-effective and meaningful interaction in virtual rehabilitation tasks in both motor and cognitive domains.info:eu-repo/semantics/publishedVersio

    Virtual reality based upper extremity rehabilitation following stroke: a review

    Get PDF
    In the last decade there have been major developments in the creation of interactive virtual scenarios for the rehabilitation of motor deficits following stroke. Virtual reality technology is arising as a promising tool to diagnose, monitor and induce functional recovery after lesions to the nervous system. This evidence has grown in the last few years, as effort has been made to develop virtual scenarios that are built on the knowledge of mechanisms of recovery. In this paper we review the state of the art virtual reality techniques for rehabilitation of functionality of the upper extremities following stroke. We refer to some of the main systems that have been developed within different rehabilitative approaches such as learning by imitation, reinforced feedback, haptic feedback, augmented practice and repetition, video capture virtual reality, exoskeletons, mental practice, action observation and execution, and others. The major findings of these studies show that virtual reality technologies will become a more and more essential ingredient in the treatment of stroke and other disorders of the nervous system.info:eu-repo/semantics/publishedVersio

    Automating senior fitness testing through gesture detection with depth sensors

    Get PDF
    Sedentarism has a negative impact on health, life expectancy and quality of life, especially in older adults. The assessment of functional fitness helps evaluating the effects of ageing and sedentarism, and this assessment is typically done through validated battery tests such as the Senior Fitness Test (SFT). In this paper we present a computer-based system for assisting and automating SFT administration and scoring in the elderly population. Our system assesses lower body strength, agility and dynamic balance, and aerobic endurance making use of a depth sensor for body tracking and multiple gesture detectors for the evaluation of movement execution. The system was developed and trained with optimal data collected in laboratory conditions and its performance was evaluated in a real environment with 22 elderly end-users, and compared to traditional SFT administered by an expert. Results show a high accuracy of our system in identifying movement patterns (>95%) and consistency with the traditional fitness assessment method. Our results suggest that this technology is a viable low cost option to assist in the fitness assessment of elderly that could be deployed for at home use in the context of fitness programs.info:eu-repo/semantics/publishedVersio

    Measured and perceived physical responses in multidimensional fitness training through exergames in older adults

    Get PDF
    Exergames have been used to increase physical activity levels to produce health benefits in older adults. However, only a small number of studies have quantified the physical activity levels produced by custom-made Exergames and their capacity to elicit recommended levels of exercise. This study investigates the effectiveness of custom-made Exergames, designed for multidimensional fitness training, in eliciting recommended levels of exercise. We rely on both objective (accelerometry) and subjective (perceived exertion) information collected in two different modalities of exercise, consisting of 40- minutes sessions: Exergaming and conventional training (Control). A between-subjects analysis was done involving two groups of active older adults (n=33). Participants in the Control Between condition performed physical activity in conventional group fitness training, while the intervention group used individualized Exergaming as training modality. In addition, a sub-group of the Exergaming participants also performed a conventional training session (Control-Within), which enabled a within-subjects comparison. Results show that participants spent significantly more time in moderate-to-vigorous intensities during Exergaming, interestingly, perceiving significantly lower exertion levels. The between-subjects analysis only presented statistically significant differences for the perceived exertion scale. This study helps to unveil the impact of custom-made Exergames in physical activity levels during training when compared to conventional training for the older adult population.info:eu-repo/semantics/publishedVersio

    Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system

    Get PDF
    Given the incidence of stroke, the need has arisen to consider more self-managed rehabilitation approaches. A promising technology is Virtual Reality (VR). Thus far, however, it is not clear what the benefits of VR systems are when compared to conventional methods. Here we investigated the clinical impact of one such system, the Rehabilitation Gaming System (RGS), on the recovery time course of acute stroke. RGS combines concepts of action execution and observation with an automatic individualization of training. METHODS. Acute stroke patients (n = 8) used the RGS during 12 weeks in addition to conventional therapy. A control group (n = 8) performed a time matched alternative treatment, which consisted of intense occupational therapy or non-specific interactive games. RESULTS. At the end of the treatment, between-group comparisons showed that the RGS group displayed significantly improved performance in paretic arm speed that was matched by better performance in the arm subpart of the Fugl-Meyer Assessment Test and the Chedoke Arm and Hand Activity Inventory. In addition, the RGS group presented a significantly faster improvement over time for all the clinical scales during the treatment period. CONCLUSIONS. Our results suggest that rehabilitation with the RGS facilitates the functional recovery of the upper extremities and that this system is therefore a promising tool for stroke neurorehabilitation.info:eu-repo/semantics/publishedVersio

    An integrative virtual reality cognitive-motor intervention approach in stroke rehabilitation: a pilot study

    Get PDF
    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patient’s capability to live independently. In post-stroke it is imperative to initiate a process of intensive rehabilitation and personalized objectives to maximize functional cognitive and motor recovery. Virtual Reality (VR) technology is being widely applied to rehabilitation of stroke, however, not in an integrative manner. Like traditional rehabilitation, these new tools mostly focus either in the cognitive or in the motor domain, which can take to a reduced impact in the performance of activities of daily living, most of them dual-task. Assuming the existence of cognitive and motor recovery interdependence, RehabNet proposes a holistic approach. Here we present a one-month long pilot study with three stroke patients whose training was a game-like VR version of the Toulouse-Piéron cancellation test, adapted to be performed by repetitive arm reaching movements. A standardized motor and cognitive assessment was performed pre and post intervention. The first results on this intervention support a holistic model for rehabilitation of stroke patients, sustaining interdependence on cognitive and motor recovery. Furthermore, we observed that the impact of the integrative VR approach generalizes to the performance of the activities of daily living.info:eu-repo/semantics/publishedVersio

    Combined cognitive-motor rehabilitation in virtual reality improves motor outcomes in chronic stroke–a pilot study

    Get PDF
    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients' capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.info:eu-repo/semantics/publishedVersio

    Is it necessary to show virtual limbs in action observation neurorehabilitation systems?

    Get PDF
    Action observation neurorehabilitation systems are usually based on the observation of a virtual limb performing different kinds of actions. In this way, the activity in the frontoparietal Mirror Neuron System is enhanced, which can be helpful to rehabilitate stroke patients. However, the presence of limbs in such systems might not be necessary to produce mirror activity, for example, frontoparietal mirror activity can be produced just by the observation of virtual tool movements. The objective of this work was to explore to what point the presence of a virtual limb impacts the Mirror Neuron System activity in neurorehabilitation systems.info:eu-repo/semantics/publishedVersio

    A serious games platform for cognitive rehabilitation with preliminary evaluation

    Get PDF
    In recent years Serious Games have evolved substantially, solving problems in diverse areas. In particular, in Cognitive Rehabilitation, Serious Games assume a relevant role. Traditional cognitive therapies are often considered repetitive and discouraging for patients and Serious Games can be used to create more dynamic rehabilitation processes, holding patients' attention throughout the process and motivating them during their road to recovery. This paper reviews Serious Games and user interfaces in rehabilitation area and details a Serious Games platform for Cognitive Rehabilitation that includes a set of features such as: natural and multimodal user interfaces and social features (competition, collaboration, and handicapping) which can contribute to augment the motivation of patients during the rehabilitation process. The web platform was tested with healthy subjects. Results of this preliminary evaluation show the motivation and the interest of the participants by playing the games.- This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia in the scope of the projects: PEst-UID/CEC/00319/2015 and PEst-UID/CEC/00027/2015. The authors would like to thank also all the volunteers that participated in the study
    corecore