141 research outputs found
A new hybrid prognostic methodology
Methodologies for prognostics usually centre on physics-based or data-driven approaches. Both have advantages and disadvantages, but accurate prediction relies on extensive data being available. For industrial applications this is very rarely the case, and hence the chosen method’s performance can deteriorate quite markedly from optimal. For this reason a hybrid methodology, merging physics-based and data-driven approaches, has been developed and is reported here. Most, if not all, hybrid methods apply physics-based and data-driven approaches in different steps of the prognostics process (i.e. state estimation and state forecasting). The presented technique combines both methods in forecasting, and integrates the short-term prediction of a physics-based model with the longer term projection of a similarity-based data-driven model, to obtain remaining useful life estimation. The proposed hybrid prognostic methodology has been tested on two engineering datasets, one for crack growth and the other for filter clogging. The performance of the presented methodology has been evaluated by comparing remaining useful life estimations obtained from both hybrid and individual prognostic models. The results show that the presented methodology improves accuracy, robustness and applicability, especially in the case of minimal data being available
Matter collineations of Spacetime Homogeneous G\"odel-type Metrics
The spacetime homogeneous G\"odel-type spacetimes which have four classes of
metrics are studied according to their matter collineations. The obtained
results are compared with Killing vectors and Ricci collineations. It is found
that these spacetimes have infinite number of matter collineations in
degenerate case, i.e. det, and do not admit proper matter
collineations in non-degenerate case, i.e. det. The degenerate
case has the new constraints on the parameters and which characterize
the causality features of the G\"odel-type spacetimes.Comment: 12 pages, LaTex, no figures, Class. Quantum.Grav.20 (2003) 216
On a stationary spinning string spacetime
The properties of a stationary massless string endowed with intrinsic spin
are discussed. The spacetime is Minkowskian geometrically but the topology is
nontrivial due to the horizon located on the surface , similar with
Rindler's case. For less than the Planck length , has the
same sign as and closed timelike curves are possible.
We assume an elementary particles' spin originates in the frame dragging
effect produced by the rotation of the source. The Sagnac time delay is
calculated and proves to be constant.Comment: revised version of hep-th/0602014 v1, 7 pages, title changed, sec.5
removed, talk given at "Recent Developments in Gravity" (NEB XII), Nafplio,
Greece, 29 June 200
Field-regularised factorization machines for mining the maintenance logs of equipment
© Springer Nature Switzerland AG 2018. Failure prediction is very important for railway infrastructure. Traditionally, data from various sensors are collected for this task. Value of maintenance logs is often neglected. Maintenance records of equipment usually indicate equipment status. They could be valuable for prediction of equipment faults. In this paper, we propose Field-regularised Factorization Machines (FrFMs) to predict failures of railway points with maintenance logs. Factorization Machine (FM) and its variants are state-of-the-art algorithms designed for sparse data. They are widely used in click-through rate prediction and recommendation systems. Categorical variables are converted to binary features through one-hot encoding and then fed into these models. However, field information is ignored in this process. We propose Field-regularised Factorization Machines to incorporate such valuable information. Experiments on data set from railway maintenance logs and another public data set show the effectiveness of our methods
Stationary Cylindrical Anisotropic Fluid
We present the whole set of equations with regularity and matching conditions
required for the description of physically meaningful stationary cylindrically
symmmetric distributions of matter, smoothly matched to Lewis vacuum spacetime.
A specific example is given. The electric and magnetic parts of the Weyl tensor
are calculated, and it is shown that purely electric solutions are necessarily
static. Then, it is shown that no conformally flat stationary cylindrical fluid
exits, satisfying regularity and matching conditions.Comment: 17 pages Latex. To appear in Gen.Rel.Gra
Bianchi Type I Cosmology in Generalized Saez-Ballester Theory via Noether Gauge Symmetry
In this paper, we investigate the generalized Saez-Ballester scalar-tensor
theory of gravity via Noether gauge symmetry (NGS) in the background of Bianchi
type I cosmological spacetime. We start with the Lagrangian of our model and
calculate its gauge symmetries and corresponding invariant quantities. We
obtain the potential function for the scalar field in the exponential form. For
all the symmetries obtained, we determine the gauge functions corresponding to
each gauge symmmetry which include constant and dynamic gauge. We discuss
cosmological implications of our model and show that it is compatible with the
observational data.Comment: 13 pages, 2 figures, accepted for publication in 'European Physical
Journal C
Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior
This paper reports on the application of an optical fiber biosensor for real-time analysis of cellular behavior. Our findings illustrate that a fiber sensor fabricated from a traditional telecommunication fiber can be integrated into conventional cell culture equipment and used for real-time and label-free monitoring of cellular responses to chemical stimuli. The sensing mechanism used for the measurement of cellular responses is based on the excitation of surface plasmon resonance (SPR) on the surface of the optical fiber. In this proof of concept study, the sensor was utilized to investigate the influence of a number of different stimuli on cells-we tested the effects of trypsin, serum and sodium azide. These stimuli induced detachment of cells from the sensor surface, uptake of serum and inhibition of cellular metabolism, accordingly. The effects of different stimuli were confirmed with alamar blue assay, phase contrast and fluorescence microscopy. The results indicated that the fiber biosensor can be successfully utilized for real-time and label-free monitoring of cellular response in the first 30. min following the introduction of a stimulus. Furthermore, we demonstrated that the optical fiber biosensors can be easily regenerated for repeated use, proving this platform as a versatile and cost-effective sensing tool
Developing a dynamic digital twin at a building level: Using Cambridge campus as case study
A Digital Twin (DT) refers to a digital replica of physical assets, processes and systems. DTs integrate artificial intelligence, machine learning and data analytics to create dynamic digital models that are able to learn and update the status of the physical counterpart from multiple sources. A DT, if equipped with appropriate algorithms will represent and predict future condition and performance of their physical counterparts. Current developments related to DTs are still at an early stage with respect to buildings and other infrastructure assets. Most of these developments focus on the architectural and engineering/construction point of view. Less attention has been paid to the operation & maintenance (O&M) phase, where the value potential is immense. A systematic and clear architecture verified with practical use cases for constructing a DT is the foremost step for effective operation and maintenance of assets. This paper presents a system architecture for developing dynamic DTs in building levels for integrating heterogeneous data sources, support intelligent data query, and provide smarter decision-making processes. This will further bridge the gaps between human relationships with buildings/regions via a more intelligent, visual and sustainable channels. This architecture is brought to life through the development of a dynamic DT demonstrator of the West Cambridge site of the University of Cambridge. Specifically, this demonstrator integrates an as-is multi-layered IFC Building Information Model (BIM), building management system data, space management data, real-time Internet of Things (IoT)-based sensor data, asset registry data, and an asset tagging platform. The demonstrator also includes two applications: (1) improving asset maintenance and asset tracking using Augmented Reality (AR); and (2) equipment failure prediction. The long-term goals of this demonstrator are also discussed in this paper
The astrometric Gaia-FUN-SSO observation campaign of 99 942 Apophis
Astrometric observations performed by the Gaia Follow-Up Network for Solar
System Objects (Gaia-FUN-SSO) play a key role in ensuring that moving objects
first detected by ESA's Gaia mission remain recoverable after their discovery.
An observation campaign on the potentially hazardous asteroid (99 942) Apophis
was conducted during the asteroid's latest period of visibility, from
12/21/2012 to 5/2/2013, to test the coordination and evaluate the overall
performance of the Gaia-FUN-SSO . The 2732 high quality astrometric
observations acquired during the Gaia-FUN-SSO campaign were reduced with the
Platform for Reduction of Astronomical Images Automatically (PRAIA), using the
USNO CCD Astrograph Catalogue 4 (UCAC4) as a reference. The astrometric
reduction process and the precision of the newly obtained measurements are
discussed. We compare the residuals of astrometric observations that we
obtained using this reduction process to data sets that were individually
reduced by observers and accepted by the Minor Planet Center. We obtained 2103
previously unpublished astrometric positions and provide these to the
scientific community. Using these data we show that our reduction of this
astrometric campaign with a reliable stellar catalog substantially improves the
quality of the astrometric results. We present evidence that the new data will
help to reduce the orbit uncertainty of Apophis during its close approach in
2029. We show that uncertainties due to geolocations of observing stations, as
well as rounding of astrometric data can introduce an unnecessary degradation
in the quality of the resulting astrometric positions. Finally, we discuss the
impact of our campaign reduction on the recovery process of newly discovered
asteroids.Comment: Accepted for publication in A&
- …