2,320 research outputs found

    Bosonic D=11 supergravity from a generalized Chern-Simons action

    Get PDF
    It is shown that the action of the bosonic sector of D=11 supergravity may be obtained by means of a suitable scaling of the originally dimensionless fields of a generalized Chern-Simons action. This follows from the eleven-form CS-potential of the most general linear combination of closed, gauge invariant twelve-forms involving the sp(32)-valued two-form curvatures supplemented by a three-form field. In this construction, the role of the skewsymmetric four-index auxiliary function needed for the first order formulation of D=11D=11 supergravity is played by the gauge field associated with the five Lorentz indices generator of the bosonic sp(32) subalgebra of osp(1|32).Comment: Misprints corrected, to appear in NPB plain latex, no figures, 25 page

    Dynamics of magnetic domain wall motion after nucleation: Dependence on the wall energy

    Full text link
    The dynamics of magnetic domain wall motion in the FeNi layer of a FeNi/Al2O3/Co trilayer has been investigated by a combination of x-ray magnetic circular dichroism, photoelectron emission microscopy, and a stroboscopic pump-probe technique. The nucleation of domains and subsequent expansion by domain wall motion in the FeNi layer during nanosecond-long magnetic field pulses was observed in the viscous regime up to the Walker limit field. We attribute an observed delay of domain expansion to the influence of the domain wall energy that acts against the domain expansion and that plays an important role when domains are small.Comment: Accepted for publication in Physical Review Letter

    Surfactant effect in heteroepitaxial growth. The Pb - Co/Cu(111) case

    Full text link
    A MonteCarlo simulations study has been performed in order to study the effect of Pb as surfactant on the initial growth stage of Co/Cu(111). The main characteristics of Co growing over Cu(111) face, i.e. the decorated double layer steps, the multiple layer islands and the pools of vacancies, disappear with the pre-evaporation of a Pb monolayer. Through MC simulations, a full picture of these complex processes is obtained. Co quickly diffuses through the Pb monolayer exchanging place with Cu atoms at the substrate. The exchange process diffusion inhibits the formation of pure Co islands, reducing the surface stress and then the formation of multilayer islands and the pools of vacancies. On the other hand, the random exchange also suppress the nucleation preferential sites generated by Co atoms at Cu steps, responsible of the step decoration.Comment: 4 pages, latex, 2 figures embedded in the tex

    Interplay between magnetic anisotropy and interlayer coupling in nanosecond magnetization reversal of spin-valve trilayers

    Full text link
    The influence of magnetic anisotropy on nanosecond magnetization reversal in coupled FeNi/Cu/Co trilayers was studied using a photoelectron emission microscope combined with x-ray magnetic circular dicroism. In quasi-isotropic samples the reversal of the soft FeNi layer is determined by domain wall pinning that leads to the formation of small and irregular domains. In samples with uniaxial magnetic anisotropy, the domains are larger and the influence of local interlayer coupling dominates the domain structure and the reversal of the FeNi layer

    Influence of topography and Co domain walls on the magnetization reversal of the FeNi layer in FeNi/Al_2\_2O_3\_3/Co magnetic tunnel junctions

    Full text link
    We have studied the magnetization reversal dynamics of FeNi/Al_2\_2O_3\_3/Co magnetic tunnel junctions deposited on step-bunched Si substrates using magneto-optical Kerr effect and time-resolved x-ray photoelectron emission microscopy combined with x-ray magnetic circular dichroism (XMCD-PEEM). Different reversal mechanisms have been found depending on the substrate miscut angle. Larger terraces (smaller miscut angles) lead to a higher nucleation density and stronger domain wall pinning. The width of domain walls with respect to the size of the terraces seems to play an important role in the reversal. We used the element selectivity of XMCD-PEEM to reveal the strong influence of the stray field of domain walls in the hard magnetic layer on the magnetic switching of the soft magnetic layer.Comment: 8 Pages, 7 Figure
    corecore