11 research outputs found

    High Content Imaging Assays for IL-6-Induced STAT3 Pathway Activation in Head and Neck Cancer Cell Lines.

    No full text
    In the canonical STAT3 signaling pathway, IL-6 receptor engagement leads to the recruitment of latent STAT3 to the activated IL-6 complex and the associated Janus kinase (JAK) phosphorylates STAT3 at Y705. pSTAT3-Y705 dimers traffic into the nucleus and bind to specific DNA response elements in the promoters of target genes to regulate their transcription. However, IL-6 receptor activation induces the phosphorylation of both the Y705 and S727 residues of STAT3, and S727 phosphorylation is required to achieve maximal STAT3 transcriptional activity. STAT3 continuously shuttles between the nucleus and cytoplasm and maintains a prominent nuclear presence that is independent of Y705 phosphorylation. The constitutive nuclear entry of un-phosphorylated STAT3 (U-STAT3) drives expression of a second round of genes by a mechanism distinct from that used by pSTAT3-Y705 dimers. The abnormally elevated levels of U-STAT3 produced by the constitutive activation of pSTAT3-Y705 observed in many tumors drive the expression of an additional set of pSTAT3-independent genes that contribute to tumorigenesis. In this chapter, we describe the HCS assay methods to measure IL-6-induced STAT3 signaling pathway activation in head and neck tumor cell lines as revealed by the expression and subcellular distribution of pSTAT3-Y705, pSTAT3-S727, and U-STAT3. Only the larger dynamic range provided by the pSTAT3-Y705 antibody would be robust and reproducible enough for screening

    High-Content pSTAT3/1 Imaging Assays to Screen for Selective Inhibitors of STAT3 Pathway Activation in Head and Neck Cancer Cell Lines

    No full text
    The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is hyperactivated in most cancers and represents a plausible therapeutic target. In the absence of STAT3-selective small-molecule inhibitors, we sought to develop pSTAT3/1 high-content imaging (HCS) assays to screen for selective inhibitors of STAT3 pathway activation in head and neck squamous cell carcinomas (HNSCC) tumor cell lines. Based on the expression of the interleukin-6 (IL-6)Rα and gp130 subunits of the IL-6 receptor complex and STAT3, we selected the Cal33 HNSCC cell line as our model. After developing image acquisition and analysis procedures, we rigorously investigated the cytokine activation responses to optimize the dynamic ranges of both assays and demonstrated that the pan-Janus kinase inhibitor pyridone 6 nonselectively inhibited pSTAT3 and pSTAT1 activation with 50% inhibition concentrations of 7.19±4.08 and 16.38±8.45 nM, respectively. The optimized pSTAT3 HCS assay performed very well in a pilot screen of 1,726 compounds from the Library of Pharmacologically Active Compounds and the National Institutes of Health clinical collection sets, and we identified 51 inhibitors of IL-6-induced pSTAT3 activation. However, only three of the primary HCS actives selectively inhibited STAT3 compared with STAT1. Our follow-up studies indicated that the nonselective inhibition of cytokine induced pSTAT3 and pSTAT1 activation by G-alpha stimulatory subunit-coupled G-protein-coupled receptor agonists, and forskolin was likely due to cyclic adenosine monophosphate-mediated up-regulation of suppressors of cytokine signaling 3. Azelastine, an H(1) receptor antagonist approved for the treatment of seasonal allergic rhinitis, nonallergic vasomotor rhinitis, and ocular conjunctivitis, was subsequently confirmed as a selective inhibitor of IL-6-induced pSTAT3 activation that also reduced the growth of HNSCC cell lines. These data illustrate the power of a chemical biology approach to lead generation that utilizes fully developed and optimized HCS assays as phenotypic screens to interrogate specific signaling pathways

    Mechanism of action of selective inhibitors of IL-6 induced STAT3 pathway in head and neck cancer cell lines

    No full text
    Studies indicate that elevated interleukin-6 (IL-6) levels engage IL6Rα-gp130 receptor complexes to activate signal transducer and activator of transcription 3 (STAT3) that is hyperactivated in many cancers including head and neck squamous cell carcinoma (HNSCC). Our previous HCS campaign identified several hits that selectively blocked IL-6-induced STAT3 activation. This study describes our investigation of the mechanism(s) of action of three of the four chemical series that progressed to lead activities: a triazolothiadiazine (864669), amino alcohol (856350), and an oxazole-piperazine (4248543). We demonstrated that all three blocked IL-6-induced upregulation of the cyclin D1 and Bcl-XL STAT3 target genes. None of the compounds exhibited direct binding interactions with STAT3 in surface plasmon resonance (SPR) binding assays; neither did they inhibit the recruitment and binding of a phospho-tyrosine-gp130 peptide to STAT3 in a fluorescence polarization assay. Furthermore, they exhibited little or no inhibition in a panel of 83 cancer-associated in vitro kinase profiling assays, including lack of inhibition of IL-6-induced Janus kinase (JAK 1, 2, and 3) activation. Further, 864669 and 4248543 selectively inhibited IL-6-induced STAT3 activation but not that induced by oncostatin M (OSM). The compounds 864669 and 4248543 abrogated IL-6-induced phosphorylation of the gp130 signaling subunit (phospho-gp130Y905) of the IL-6-receptor complex in HNSCC cell lines which generate docking sites for the SH2 domains of STAT3. Our data indicate that 864669 and 4248543 block IL-6-induced STAT activation by interfering with the recruitment, assembly, or activation of the hexamer-activated IL-6/IL-6Rα/gp130 signaling complex that occurs after IL-6 binding to IL-6Rα subunits

    HCS campaign to identify selective inhibitors of IL-6-induced STAT3 pathway activation in head and neck cancer cell lines.

    No full text
    Signal transducer and activator of transcription factor 3 (STAT3) is hyperactivated in head and neck squamous cell carcinomas (HNSCC). Cumulative evidence indicates that IL-6 production by HNSCC cells and/or stromal cells in the tumor microenvironment activates STAT3 and contributes to tumor progression and drug resistance. A library of 94,491 compounds from the Molecular Library Screening Center Network (MLSCN) was screened for the ability to inhibit interleukin-6 (IL-6)-induced pSTAT3 activation. For contractual reasons, the primary high-content screening (HCS) campaign was conducted over several months in 3 distinct phases; 1,068 (1.1%) primary HCS actives remained after cytotoxic or fluorescent outliers were eliminated. One thousand one hundred eighty-seven compounds were cherry-picked for confirmation; actives identified in the primary HCS and compounds selected by a structural similarity search of the remaining MLSCN library using hits identified in phases I and II of the screen. Actives were confirmed in pSTAT3 IC50 assays, and an IFNγ-induced pSTAT1 activation assay was used to prioritize selective inhibitors of STAT3 activation that would not inhibit STAT1 tumor suppressor functions. Two hundred three concentration-dependent inhibitors of IL-6-induced pSTAT3 activation were identified and 89 of these also produced IC50s against IFN-γ-induced pSTAT1 activation. Forty-nine compounds met our hit criteria: they reproducibly inhibited IL-6-induced pSTAT3 activation by ≥70% at 20 μM; their pSTAT3 activation IC50s were ≤25 μM; they were ≥2-fold selective for pSTAT3 inhibition over pSTAT1 inhibition; a cross target query of PubChem indicated that they were not biologically promiscuous; and they were ≥90% pure. Twenty-six chemically tractable hits that passed filters for nuisance compounds and had acceptable drug-like and ADME-Tox properties by computational evaluation were purchased for characterization. The hit structures were distributed among 5 clusters and 8 singletons. Twenty-four compounds inhibited IL-6-induced pSTAT3 activation with IC50s ≤20 μM and 13 were ≥3-fold selective versus inhibition of pSTAT1 activation. Eighteen hits inhibited the growth of HNSCC cell lines with average IC50s ≤ 20 μM. Four chemical series were progressed into lead optimization: the guanidinoquinazolines, the triazolothiadiazines, the amino alcohols, and an oxazole-piperazine singleton

    A simplified synthesis of novel dictyostatin analogues with In Vitro activity against epothilone B-resistant cells and antiangiogenic activity in zebrafish embryos

    No full text
    The natural product (-)-dictyostatin is a microtubule-stabilizing agent that potently inhibits the growth of human cancer cells, including paclitaxel-resistant clones. Extensive structure-activity relationship studies have revealed several regions of the molecule that can be altered without loss of activity. The most potent synthetic dictyostatin analogue described to date, 6-epi-dictyostatin, has superior in vivo antitumor activity against human breast cancer xenografts compared with paclitaxel. In spite of their encouraging activities in preclinical studies, the complex chemical structure of the dictyostatins presents a major obstacle for their development into novel antineoplastic therapies. We recently reported a streamlined synthesis of 16-desmethyl-25,26-dihydrodictyostatins and found several agents that, when compared with 6-epi-dictyostatin, retained nanomolar activity in cellular microtubule-bundling assays but had lost activity against paclitaxel-resistant cells with mutations in β-tubulin. Extending these studies, we applied the new, highly convergent synthesis to generate 25,26-dihydrodictyostatin and 6-epi-25,26-dihydrodictyostatin. Both compounds were potent microtubule- perturbing agents that induced mitotic arrest and microtubule assembly in vitro and in intact cells. In vitro radioligand binding studies showed that 25,26-dihydrodictyostatin and its C6-epimer were capable of displacing [ 3H]paclitaxel and [14C]epothilone B from microtubules with potencies comparable to (-)-dictyostatin and discodermolide. Both compounds inhibited the growth of paclitaxel- and epothilone B-resistant cell lines at low nanomolar concentrations, synergized with paclitaxel in MDA-MB-231 human breast cancer cells, and had antiangiogenic activity in transgenic zebrafish larvae. These data identify 25,26-dihydrodictyostatin and 6-epi-25,26- dihydrodictyostatin as candidates for scale-up synthesis and further preclinical development. ©2011 AACR

    Optimization of pyrazole-containing 1,2,4-triazolo-[3,4-b]thiadiazines, a new class of STAT3 pathway inhibitors

    No full text
    Structure-activity relationship studies of a 1,2,4-triazolo-[3,4-b]thiadiazine scaffold, identified in an HTS campaign for selective STAT3 pathway inhibitors, determined that a pyrazole group and specific aryl substitution on the thiadiazine were necessary for activity. Improvements in potency and metabolic stability were accomplished by the introduction of an α-methyl group on the thiadiazine. Optimized compounds exhibited anti-proliferative activity, reduction of phosphorylated STAT3 levels and effects on STAT3 target genes. These compounds represent a starting point for further drug discovery efforts targeting the STAT3 pathway
    corecore