42 research outputs found

    Un-oriented Quiver Theories for Majorana Neutrons

    Get PDF
    In the context of un-oriented open string theories, we identify quivers whereby a Majorana mass for the neutron is indirectly generated by exotic instantons. We discuss two classes of (Susy) Standard Model like quivers, depending on the embedding of SU(2)_W in the Chan-Paton group. In both cases, the main mechanism involves a vector-like pair mixing through a non-perturbative mass term. We also discuss possible relations between the phenomenology of Neutron-Antineutron oscillations and LHC physics in these models. In particular, a vector-like pair of color-triplet scalars or color-triplet fermions could be directly detected at LHC, compatibly with n-\bar{n} limits. Finally we briefly comment on Pati-Salam extensions of our models.Comment: More comments on phenomenology and fluxes, Re-discussion of SM-quivers compatible with n-cycles conditions Version accepted by JHE

    Sequelae due to bacterial meningitis among African children: a systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>African children have some of the highest rates of bacterial meningitis in the world. Bacterial meningitis in Africa is associated with high case fatality and frequent neuropsychological sequelae. The objective of this study is to present a comprehensive review of data on bacterial meningitis sequelae in children from the African continent.</p> <p>Methods</p> <p>We conducted a systematic literature search to identify studies from Africa focusing on children aged between 1 month to 15 years with laboratory-confirmed bacterial meningitis. We extracted data on neuropsychological sequelae (hearing loss, vision loss, cognitive delay, speech/language disorder, behavioural problems, motor delay/impairment, and seizures) and mortality, by pathogen.</p> <p>Results</p> <p>A total of 37 articles were included in the final analysis representing 21 African countries and 6,029 children with confirmed meningitis. In these studies, nearly one fifth of bacterial meningitis survivors experienced in-hospital sequelae (median = 18%, interquartile range (IQR) = 13% to 27%). About a quarter of children surviving pneumococcal meningitis and <it>Haemophilus influenzae </it>type b (Hib) meningitis had neuropsychological sequelae by the time of hospital discharge, a risk higher than in meningococcal meningitis cases (median = 7%). The highest in-hospital case fatality ratios observed were for pneumococcal meningitis (median = 35%) and Hib meningitis (median = 25%) compared to meningococcal meningitis (median = 4%). The 10 post-discharge studies of children surviving bacterial meningitis were of varying quality. In these studies, 10% of children followed-up post discharge died (range = 0% to 18%) and a quarter of survivors had neuropsychological sequelae (range = 3% to 47%) during an average follow-up period of 3 to 60 months.</p> <p>Conclusion</p> <p>Bacterial meningitis in Africa is associated with high mortality and risk of neuropsychological sequelae. Pneumococcal and Hib meningitis kill approximately one third of affected children and cause clinically evident sequelae in a quarter of survivors prior to hospital discharge. The three leading causes of bacterial meningitis are vaccine preventable, and routine use of conjugate vaccines could provide substantial health and economic benefits through the prevention of childhood meningitis cases, deaths and disability.</p

    Clinical and laboratory predictors of death in African children with features of severe malaria: a systematic review and meta-analysis.

    Get PDF
    The criteria for defining severe malaria have evolved over the last 20 years. We aimed to assess the strength of association of death with features currently characterizing severe malaria through a systematic review and meta-analysis. Electronic databases (Medline, Embase, Cochrane Database of Systematic Reviews, Thomson Reuters Web of Knowledge) were searched to identify publications including African children with severe malaria. PRISMA guidelines were followed. Selection was based on design (epidemiological, clinical and treatment studies), setting (Africa), participants (children &lt; 15 years old with severe malaria), outcome (survival/death rate), and prognostic indicators (clinical and laboratory features). Quality assessment was performed following the criteria of the 2011 Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Odds ratios (ORs) were calculated for each study and prognostic indicator, and, when a test was assessed in at least two studies, pooled estimates of ORs were computed using fixed- or random-effects meta-analysis. A total of 601 articles were identified and screened and 30 publications were retained. Features with the highest pooled ORs were renal failure (5.96, 95% CI 2.93-12.11), coma score (4.83, 95% CI 3.11-7.5), hypoglycemia (4.59, 95% CI 2.68-7.89), shock (4.31, 95% CI 2.15-8.64), and deep breathing (3.8, 95% CI 3.29-4.39). Only half of the criteria had an OR &gt; 2. Features with the lowest pooled ORs were impaired consciousness (0.58, 95% CI 0.25-1.37), severe anemia (0.76, 95% CI 0.5- 1.13), and prostration (1.12, 95% CI 0.45-2.82). The findings of this meta-analysis show that the strength of association between the criteria defining severe malaria and death is quite variable for each clinical and/or laboratory feature (OR ranging from 0.58 to 5.96). This ranking allowed the identification of features weakly associated with death, such as impaired consciousness and prostration, which could assist to improve case definition, and thus optimize antimalarial treatment

    Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002)

    Get PDF
    Background COVID-19 vaccine supply shortages are causing concerns about compromised immunity in some countries as the interval between the first and second dose becomes longer. Conversely, countries with no supply constraints are considering administering a third dose. We assessed the persistence of immunogenicity after a single dose of ChAdOx1 nCoV-19 (AZD1222), immunity after an extended interval (44–45 weeks) between the first and second dose, and response to a third dose as a booster given 28–38 weeks after the second dose. Methods In this substudy, volunteers aged 18–55 years who were enrolled in the phase 1/2 (COV001) controlled trial in the UK and had received either a single dose or two doses of 5 × 1010 viral particles were invited back for vaccination. Here we report the reactogenicity and immunogenicity of a delayed second dose (44–45 weeks after first dose) or a third dose of the vaccine (28–38 weeks after second dose). Data from volunteers aged 18–55 years who were enrolled in either the phase 1/2 (COV001) or phase 2/3 (COV002), single-blinded, randomised controlled trials of ChAdOx1 nCoV-19 and who had previously received a single dose or two doses of 5 × 1010 viral particles are used for comparison purposes. COV001 is registered with ClinicalTrials.gov, NCT04324606, and ISRCTN, 15281137, and COV002 is registered with ClinicalTrials.gov, NCT04400838, and ISRCTN, 15281137, and both are continuing but not recruiting. Findings Between March 11 and 21, 2021, 90 participants were enrolled in the third-dose boost substudy, of whom 80 (89%) were assessable for reactogenicity, 75 (83%) were assessable for evaluation of antibodies, and 15 (17%) were assessable for T-cells responses. The two-dose cohort comprised 321 participants who had reactogenicity data (with prime-boost interval of 8–12 weeks: 267 [83%] of 321; 15–25 weeks: 24 [7%]; or 44–45 weeks: 30 [9%]) and 261 who had immunogenicity data (interval of 8–12 weeks: 115 [44%] of 261; 15–25 weeks: 116 [44%]; and 44–45 weeks: 30 [11%]). 480 participants from the single-dose cohort were assessable for immunogenicity up to 44–45 weeks after vaccination. Antibody titres after a single dose measured approximately 320 days after vaccination remained higher than the titres measured at baseline (geometric mean titre of 66·00 ELISA units [EUs; 95% CI 47·83–91·08] vs 1·75 EUs [1·60–1·93]). 32 participants received a late second dose of vaccine 44–45 weeks after the first dose, of whom 30 were included in immunogenicity and reactogenicity analyses. Antibody titres were higher 28 days after vaccination in those with a longer interval between first and second dose than for those with a short interval (median total IgG titre: 923 EUs [IQR 525–1764] with an 8–12 week interval; 1860 EUs [917–4934] with a 15–25 week interval; and 3738 EUs [1824–6625] with a 44–45 week interval). Among participants who received a third dose of vaccine, antibody titres (measured in 73 [81%] participants for whom samples were available) were significantly higher 28 days after a third dose (median total IgG titre: 3746 EUs [IQR 2047–6420]) than 28 days after a second dose (median 1792 EUs [IQR 899–4634]; Wilcoxon signed rank test p=0·0043). T-cell responses were also boosted after a third dose (median response increased from 200 spot forming units [SFUs] per million peripheral blood mononuclear cells [PBMCs; IQR 127–389] immediately before the third dose to 399 SFUs per milion PBMCs [314–662] by day 28 after the third dose; Wilcoxon signed rank test p=0·012). Reactogenicity after a late second dose or a third dose was lower than reactogenicity after a first dose. Interpretation An extended interval before the second dose of ChAdOx1 nCoV-19 leads to increased antibody titres. A third dose of ChAdOx1 nCoV-19 induces antibodies to a level that correlates with high efficacy after second dose and boosts T-cell responses. Funding UK Research and Innovation, Engineering and Physical Sciences Research Council, National Institute for Health Research, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research Oxford Biomedical Research Centre, Chinese Academy of Medical Sciences Innovation Fund for Medical Science, Thames Valley and South Midlands NIHR Clinical Research Network, AstraZeneca, and Wellcome

    Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.

    Get PDF
    BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca
    corecore