64 research outputs found

    Mesenchymal Stem Cell Therapy Modulates the Inflammatory Response in Experimental Traumatic Brain Injury

    Get PDF
    Therapy with mesenchymal stem cells (MSCs) has showed to be promising due to its immunomodulatory function. Traumatic brain injury (TBI) triggers immune response and release of inflammatory mediators, mainly cytokines, by glial cells creating a hostile microenvironment for endogenous neural stem cells (NSCs). We investigated the effects of factors secreted by MSCs on NSC in vitro and analyzed cytokines expression in vitro in a TBI model. Our in vitro results show that MSC-secreted factors increase NSC proliferation and induce higher expression of GFAP, indicating a tendency toward differentiation into astrocytes. In vivo experiments showed that MSC injection at an acute model of brain injury diminishes a broad profile of cytokines in the tissue, suggesting that MSC-secreted factors may modulate the inflammation at the injury site, which may be of interest to the development of a favorable microenvironment for endogenous NSC and consequently to repair the injured tissue

    Urinary glycosaminoglycans excretion and the effect of dimethyl sulfoxide in an experimental model of non-bacterial cystitis

    Get PDF
    PURPOSE: We reproduced a non-bacterial experimental model to assess bladder inflammation and urinary glycosaminoglycans (GAG) excretion and examined the effect of dimethyl sulfoxide (DMSO). MATERIALS AND METHODS: Female rats were instilled with either protamine sulfate (PS groups) or sterile saline (control groups). At different days after the procedure, 24 h urine and bladder samples were obtained. Urinary levels of hyaluronic acid (HA) and sulfated glycosaminoglycans (S-GAG) were determined. Also to evaluate the effect of DMSO animals were instilled with either 50% DMSO or saline 6 hours after PS instillation. To evaluate the effect of DMSO in healthy bladders, rats were instilled with 50% DMSO and controls with saline. RESULTS: In the PS groups, bladder inflammation was observed, with polymorphonuclear cells during the first days and lymphomononuclear in the last days. HA and S-GAG had 2 peaks of urinary excretion, at the 1st and 7th day after PS injection. DMSO significantly reduced bladder inflammation. In contrast, in healthy bladders, DMSO produced mild inflammation and an increase in urinary HA levels after 1 and 7 days and an increase of S-GAG level in 7 days. Animals instilled with PS and treated with DMSO had significantly reduced levels of urinary HA only at the 1st day. Urinary S-GAG/Cr levels were similar in all groups. CONCLUSIONS: Increased urinary levels of GAG were associated with bladder inflammation in a PS-induced cystitis model. DMSO significantly reduced the inflammatory process after urothelial injury. Conversely, this drug provoked mild inflammation in normal mucosa. DMSO treatment was shown to influence urinary HA excretion

    Caloric Restriction Is More Efficient than Physical Exercise to Protect from Cisplatin Nephrotoxicity via PPAR-Alpha Activation

    Get PDF
    The antineoplastic drug cisplatin promotes renal injury, which limits its use. Protocols that reduce renal cisplatin toxicity will allow higher doses to be used in cisplatin treatment. Here, we compare physical exercise and caloric restriction (CR) as protocols to reduce cisplatin renal injury in mice. Male C57BL/6 were divided into four groups: Control, cisplatin, exercise + cisplatin, and 30% CR + cisplatin. Animals were injected with a single dose of cisplatin (20 mg/kg i.p.) and sacrificed 96 h after injection. Quantitative real time PCR, histological analyses, immunohistochemistry, and biochemical measurements were performed to investigate renal injury, necrosis, apoptosis, and inflammatory mechanisms. Both protocols protected against cisplatin renal injury, but CR was more effective in reducing uraemia and renal necrosis. The CR + Cisplatin group exhibited reduced serum IL-1 beta and INF-alpha levels. No differences were noted in the renal mRNA expression of cytokines. Both interventions reduced apoptosis, but only the CR + Cisplatin group decreased TNFR2 protein expression. PPAR-ci was activated in mice after CR. An antagonist of PPAR-alpha blocked the protective effect of CR. Both interventions attenuated the nephrotoxicity caused by cisplatin injection, but CR + Cisplatin showed a better response by modulating TNFR2. Moreover, part of the CR benefit depends on PPAR-alpha activation.FAPESP (Fundacao de Apoio a Pesquisa do Estado de Sao Paulo)CAPES/DAADUniv Fed Sao Paulo, Dept Biofis, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Med, Disciplina Nefrol, Sao Paulo, BrazilUniv Sao Paulo, Inst Ciencias Biomed, Dept Immunol, Sao Paulo, BrazilUniv Sao Paulo, Dept Clin Med, Sao Paulo, BrazilUniv Fed Pelotas, Escola Nutr, Dept Nutr, Pelotas, BrazilMax Delbruck Ctr Mol Med, Berlin, GermanyUniv Fed Sao Paulo, Dept Biofis, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Med, Disciplina Nefrol, Sao Paulo, BrazilFAPESP: 2013/06207-6FAPESP: 2015/20082-7CAPES/DAAD: 427/15Web of Scienc

    Exercise and Caloric Restriction Alter the Immune System of Mice Submitted to a High-Fat Diet

    Get PDF
    As the size of adipocytes increases during obesity, the establishment of resident immune cells in adipose tissue becomes an important source of proinflammatory mediators. Exercise and caloric restriction are two important, nonpharmacological tools against body mass increase. To date, their effects on the immune cells of adipose tissue in obese organisms, specifically when a high-fat diet is consumed, have been poorly investigated. Thus, after consuming a high-fat diet, mice were submitted to chronic swimming training or a 30% caloric restriction in order to investigate the effects of both interventions on resident immune cells in adipose tissue. These strategies were able to reduce body mass and resulted in changes in the number of resident immune cells in the adipose tissue and levels of cytokines/chemokines in serum. While exercise increased the number of NK cells in adipose tissue and serum levels of IL-6 and RANTES, caloric restriction increased the CD4+/CD8+ cell ratio and MCP-1 levels. Together, these data demonstrated that exercise and caloric restriction modulate resident immune cells in adipose tissues differently in spite of an equivalent body weight reduction. Additionally, the results also reinforce the idea that a combination of both strategies is better than either individually for combating obesity.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo, Dept Biophys, BR-04023062 São Paulo, BrazilUniv São Paulo, Sch Arts Sci & Humanities, BR-03828000 São Paulo, BrazilUniv São Paulo, Inst Biomed Sci, Lab Transplantat Immunobiol, Dept Immunol, BR-05508900 São Paulo, BrazilUniv Fed Pelotas, Sch Nutr, Dept Nutr, BR-96010610 Pelotas, RS, BrazilUniversidade Federal de São Paulo, Dept Biophys, BR-04023062 São Paulo, BrazilFAPESP: 2011/03528-0Web of Scienc

    Pulmonary Inflammation Is Regulated by the Levels of the Vesicular Acetylcholine Transporter

    Get PDF
    Acetylcholine (ACh) plays a crucial role in physiological responses of both the central and the peripheral nervous system. Moreover, ACh was described as an anti-inflammatory mediator involved in the suppression of exacerbated innate response and cytokine release in various organs. However, the specific contributions of endogenous release ACh for inflammatory responses in the lung are not well understood. To address this question we have used mice with reduced levels of the vesicular acetylcholine transporter (VAChT), a protein required for ACh storage in secretory vesicles. VAChT deficiency induced airway inflammation with enhanced TNF-alpha and IL-4 content, but not IL-6, IL-13 and IL-10 quantified by ELISA. Mice with decreased levels of VAChT presented increased collagen and elastic fibers deposition in airway walls which was consistent with an increase in inflammatory cells positive to MMP-9 and TIMP-1 in the lung. In vivo lung function evaluation showed airway hyperresponsiveness to methacholine in mutant mice. The expression of nuclear factor-kappa B (p65-NF-kappa B) in lung of VAChT-deficient mice were higher than in wild-type mice, whereas a decreased expression of janus-kinase 2 (JAK2) was observed in the lung of mutant animals. Our findings show the first evidence that cholinergic deficiency impaired lung function and produce local inflammation. Our data supports the notion that cholinergic system modulates airway inflammation by modulation of JAK2 and NF-kappa B pathway. We proposed that intact cholinergic pathway is necessary to maintain the lung homeostasis

    Chronic VEGF Blockade Worsens Glomerular Injury in the Remnant Kidney Model

    Get PDF
    VEGF inhibition can promote renal vascular and parenchymal injury, causing proteinuria, hypertension and thrombotic microangiopathy. The mechanisms underlying these side effects are unclear. We investigated the renal effects of the administration, during 45 days, of sunitinib (Su), a VEGF receptor inhibitor, to rats with 5/6 renal ablation (Nx). Adult male Munich-Wistar rats were distributed among groups S+V, sham-operated rats receiving vehicle only; S+Su, S rats given Su, 4 mg/kg/day; Nx+V, Nx rats receiving V; and Nx+Su, Nx rats receiving Su. Su caused no change in Group S. Seven and 45 days after renal ablation, renal cortical interstitium was expanded, in association with rarefaction of peritubular capillaries. Su did not worsen hypertension, proteinuria or interstitial expansion, nor did it affect capillary rarefaction, suggesting little angiogenic activity in this model. Nx animals exhibited glomerulosclerosis (GS), which was aggravated by Su. This effect could not be explained by podocyte damage, nor could it be ascribed to tuft hypertrophy or hyperplasia. GS may have derived from organization of capillary microthrombi, frequently observed in Group Nx+Su. Treatment with Su did not reduce the fractional glomerular endothelial area, suggesting functional rather than structural cell injury. Chronic VEGF inhibition has little effect on normal rats, but can affect glomerular endothelium when renal damage is already present

    Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice

    Get PDF
    A genetic and pharmacological approach reveals novel insights into how changes in gut microbiota can subvert genetically predetermined phenotypes from lean to obese

    The emergence of cytomegalovirus resistance to ganciclovir therapy in kidney transplant recipients

    No full text
    Transplant recipients that have not been previously exposed to the cytomegalovirus (CMV) are highly susceptible to viral diseases while under immunosuppression therapy. CMV disease requires prolonged therapy, facilitating the emergence of resistant strains. Persistence of positive antigenemia represents clinical evidence of the presence of resistant strains, although its frequency is unknown. These strains may present amino acid deletions or Substitutions in conserved regions of the UL97 protein, point mutations in the DNA polymerase (UL54), or both. in this study we aimed to analyze the prevalence of mutations associated with ganciclovir resistance in transplant recipients. Fifteen kidney transplant recipients and four kidney-pancreas transplant recipients, with a positive and oscillating CMV viremia detected by sequential antigenemia test, were enrolled. the UL97 gene was amplified by Nested-PCR and enzymatically digested in samples of these patients in order to detect mutations in the most common codons, such as 460 (M460V), 594 (A594V) and 595(L595S/F). the end-product fragments were further sequenced. Nine (47.4%) out of 19 patients presented with mutations in UL97 at codons L595S (55.6%), A594V (11.1%), A595F/A594V (11.1%) and L595S/A594V (22.2%). None presented with Mutation at the M460V codon. Renal transplant patients with oscillation in viral load for more than 2 weeks might have developed viral resistance to anti-drug therapy. Its detection might aid physicians in their clinical plan of tapering the patient's immunosuppression. (c) 2006 Elsevier B.V. All rights reserved.Universidade Federal de São Paulo, Disciplina Nefrol, Lab Imunol Clin & Expt, BR-4039032 São Paulo, BrazilUniversidade Federal de São Paulo, Div Infect Dis, Escola Paulista Med, São Paulo, BrazilUniv São Paulo, Inst Biomed Sci, Dept Immunol, São Paulo, BrazilUniversidade Federal de São Paulo, Disciplina Nefrol, Lab Imunol Clin & Expt, BR-4039032 São Paulo, BrazilUniversidade Federal de São Paulo, Div Infect Dis, Escola Paulista Med, São Paulo, BrazilWeb of Scienc
    corecore