22 research outputs found

    Investigation on fracture toughness of laser beam welded steels

    No full text
    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO_2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat microtensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strenght mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)First published in: Mordike, B.L. (ed.) 'ECLAT - European Conference on Laser Treatment of Materials', Weinheim: Wiley-VCH Verlag, 1998, pp. 401-411Available from TIB Hannover: RA 3251(99/E/11) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Taxa-area relationships for microbes: the unsampled and the unseen

    No full text
    The recent observation of a power–law relationship, S ∝ A<sup>z</sup>, between number of taxa, S, and area, A, for microbial eukaryotes and bacteria suggests that this is one of the few generic relationships in ecology, applicable to plants, animals and microbes. However, the rate of increase in the number of species with area varies from approximately the fourth (z = 0.26) to as little as the 50th root (z = 0.0019) in microbes. This is an enormous range for which no quantitative explanation has been proffered. We show by sampling from synthetic populations that the disparity between sample and community sizes in microbial community surveys means z can be considerably underestimated and accrual of rare taxa with increasing area will not be detectable. Significant microbial taxa–area relationships will only be observed when changes in community structure within samples correlate with area. Thus, the very low z values observed recently cannot be used as the sole evidence in support of any particular community theory of community assembly. More generally, this suggests that our search for patterns and laws in the microbial world will be profoundly influenced and, potentially distorted by the sample sizes that are typical of microbial community surveys

    Predictors of reproductive cost in female Soay sheep

    No full text
    1. We investigate factors influencing the trade-off between survival and reproduction in female Soay sheep (Ovis aries). Multistate capture-recapture models are used to incorporate the state-specific recapture probability and to investigate the influence of age and ecological conditions on the cost of reproduction, defined as the difference between survival of breeder and non-breeder ewes on a logistic scale. 2. The cost is identified as a quadratic function of age, being greatest for females breeding at 1 year of age and when more than 7 years old. Costs, however, were only present during severe environmental conditions (wet and stormy winters occurring when population density was high). 3. Winter severity and population size explain most of the variation in the probability of breeding for the first time at 1 year of life, but did not affect the subsequent breeding probability. 4. The presence of a cost of reproduction was confirmed by an experiment where a subset of females was prevented from breeding in their first year of life. 5. Our results suggest that breeding decisions are quality or condition dependent. We show that the interaction between age and time has a significant effect on variation around the phenotypic trade-off function: selection against weaker individuals born into cohorts that experience severe environmental conditions early in life can progressively eliminate low-quality phenotypes from these cohorts, generating population-level effects
    corecore