223 research outputs found

    Study of atmospheric aerosol by means of nuclear techniques with accelerator at LABEC

    Get PDF
    The atmospheric aerosols, despite their tiny concentration in the air, have a relevant impact on a wide range of issues, spanning from the local to the global scale. Many epidemiologic studies on human exposures to ambient particulate matter have clearly established a statistically significant correlation between fineparticles concentration in the air and health effects. Moreover, increasing interest originates by the role of aerosols in climate change, and in particular in global warming and changes in hydrological cycles. Nuclear techniques have been demonstrated to be an effective tool for aerosol study. In particular, the IBA (Ion Beam Analysis) techniques may allow the detection of all the elements present in the aerosol samples. Radiocarbon measurements, performed by AMS (Accelerator Mass Spectrometry), can give fundamental information about the sources of the aerosol carbonaceous fraction. Without claiming to be exhaustive, a brief description of the role of these techniques in the aerosol study is given in the present paper, with a special attention to their applications at the INFN-LABEC laboratory of Florence

    Improvements in PIXE analysis of hourly particulate matter samples

    Get PDF
    Most air quality studies on particulate matter (PM) are based on 24-h averaged data; however, many PM emissions as well as their atmospheric dilution processes change within a few hours. Samplings of PM with 1-h resolution can be performed by the streaker sampler (PIXE International Corporation), which is designed to separate the fine (aerodynamic diameter less than 2.5 μm) and the coarse (aerodynamic diameter between 2.5 and 10 μm) fractions of PM. These samples are efficiently analyzed by Particle Induced X-ray Emission (PIXE) at the LABEC laboratory of INFN in Florence (Italy), equipped with a 3 MV Tandetron accelerator, thanks to an optimized external-beam set-up, a convenient choice of the beam energy and suitable collecting substrates. A detailed description of the adopted set-up and results from a methodological study on the detection limits for the selection of the optimal beam energy are shown; the outcomes of the research on alternative collecting substrates, which produce a lower background during the measurements, and with lower contaminations, are also discussed

    Measurement report: Receptor modeling for source identification of urban fine and coarse particulate matter using hourly elemental composition

    Get PDF
    The elemental composition of the fine (PM2.5) and coarse (PM2.5−10) fraction of atmospheric particulate matter was measured at an hourly time resolution by the use of a streaker sampler during a winter period at a Central European urban background site in Warsaw, Poland. A combination of multivariate (Positive Matrix Factorization) and wind- (Conditional Probability Function) and trajectory-based (Cluster Analysis) receptor models was applied for source apportionment. It allowed for the identification of five similar sources in both fractions, including sulfates, soil dust, road salt, and traffic- and industry-related sources. Another two sources, i.e., Cl-rich and wood and coal combustion, were solely identified in the fine fraction. In the fine fraction, aged sulfate aerosol related to emissions from domestic solid fuel combustion in the outskirts of the city was the largest contributing source to fine elemental mass (44 %), while traffic-related sources, including soil dust mixed with road dust, road dust, and traffic emissions, had the biggest contribution to the coarse elemental mass (together accounting for 83 %). Regional transport of aged aerosols and more local impact of the rest of the identified sources played a crucial role in aerosol formation over the city. In addition, two intensive Saharan dust outbreaks were registered on 18 February and 8 March 2016. Both episodes were characterized by the long-range transport of dust at 1500 and 3000 m over Warsaw and the concentrations of the soil component being 7 (up to 3.5 µg m−3) and 6 (up to 6.1 µg m−3) times higher than the mean concentrations observed during non-episodes days (0.5 and 1.1 µg m−3) in the fine and coarse fractions, respectively. The set of receptor models applied to the high time resolution data allowed us to follow, in detail, the daily evolution of the aerosol elemental composition and to identify distinct sources contributing to the concentrations of the different PM fractions, and it revealed the multi-faceted nature of some elements with diverse origins in the fine and coarse fractions. The hourly resolution of meteorological conditions and air mass back trajectories allowed us to follow the transport pathways of the aerosol as well.</p

    High time-resolved multi-wavelength measurements of light absorption properties of atmospheric aerosol using a polar photometer

    Get PDF
    Black Carbon (BC) is the main absorber of solar radiation among the aerosol components, it influences cloud processes, and alters the melting of snow and ice cover. On global scale, it is currently identified as the second most important individual climate-warming component after CO2, but uncertainties on the radiative forcing related to BC-radiation interaction still cover more than one order of magnitude. Moreover, weakly absorbing organic material (brown carbon, BrC) in the form of particle coating or as particle as-is can be considered a further important contributor to aerosol absorption. The peculiarity of BrC is that it is very effective in the absorption of short-\u3bb radiation whereas its contribution to aerosol absorption is negligible in the red or near-IR bands. It is noteworthy that BC and BrC can also be used for source apportionment purposes (e.g. they can be helpful for the discrimination between fossil fuels combustion vs. biomass burning). Thus, work is currently ongoing to develop instrumentation able to give more and more detailed information on the absorption properties of atmospheric aerosol, possibly related to mixing and/or size information, and BC content. Moving in this frame, a multi-\u3bb polar photometer (PP_UniMI) has been developed at the Department of Physics of the University of Milan in the last years. The instrument is based on the measurement on the scattering plane of the light transmitted and scattered in the forward and back hemispheres by unloaded and loaded samples using a rotating photodiode. Data reduction aiming at the determination of the sample absorbance follows Petzold et al. (2004) and therein cited literature. In its original version (see details in Vecchi et al., 2013) the PP_UniMI allowed measuring aerosol deposited on 47 mm diameter filters at a single wavelength (\u3bb), then further upgraded to 4-\u3bb (870, 633, 532, 405 nm). In this work, we improved PP_UniMI to provide the absorption properties of the aerosol collected with high-time resolution using a streaker sampler. Such sampler collects aerosol segregated in two size-classes (fine and coarse) on a rotating frame with hourly resolution. The deposit corresponding to 1-hour sampling is collected on 1x8 mm2 streaks. To analyse such deposits, suitable pairs of lenses were used to reduce the spot-size down to about 1 mm diameter (see Figure 1). A 1-mm diameter pinhole was added to the set-up in order to ensure that the spot was small enough to allow the single-streak measurement. It is noteworthy that some laser sources are placed at 90\ub0 respect to the incident direction on the filter, thus mirrors are present in the set-up. The new set-up or the instrument was validated against independent measurements carried out using a Multi-Angle Absorption Photometer for what concerns the red-light results. The results presented here will include the validation of the instrumentation and the results of one-week winter campaign. Data reduction will aim at evidencing high time-resolved trends of multi-wavelength aerosol absorption. This is important both for gaining insight into aerosol absorption properties (still poorly known) and for source identification purposes

    Nuclear techniques and the particulate matter pollution in big harbours

    Get PDF
    The impact of big harbours on the air quality is an important issue both from the environmental and the economical point of view. The harbour of Genoa is the largest in Italy and one of the major ports of the Mediterranean. We have determined the fraction of Particulate Matter (PM) concentration in town due to the heavy oil combustion of the diesel engines of the vessels in the harbour. This turned out to be 12% in PM10 and 25% in PM2.5 and PM1, with about 85% of the PM from this source concentrated in particles with aerodynamic diameter, Dae < 1 μm. We could also point out a link between concentration peaks of the tracers of heavy oil combustion (V and Ni) and the ferryboats traffic. The key tool in this work was the coupling between particular sampling devices and some Ion Beam Analysis (IBA) techniques, in particular Particle Induced X-ray Emission (PIXE), which belong to the broader category of nuclear techniques in applied physics

    Exploiting multi-wavelength aerosol absorption coefficients in a multi-time resolution source apportionment study to retrieve source-dependent absorption parameters

    Get PDF
    In this paper, a new methodology coupling aerosol optical and chemical parameters in the same source apportionment study is reported. In addition to results on source contributions, this approach provides information such as estimates for the atmospheric absorption Angstrom exponent (alpha) of the sources and mass absorption cross sections (MACs) for fossil fuel emissions at different wavelengths. A multi-time resolution source apportionment study using the Multilinear Engine (ME-2) was performed on a PM10 dataset with different time resolutions (24, 12, and 1 h) collected during two different seasons in Milan (Italy) in 2016. Samples were optically analysed by an in-house polar photometer to retrieve the aerosol absorption coefficient b(ap) (in Mm 1) at four wavelengths (lambda = 405, 532, 635, and 780 nm) and were chemically characterized for elements, ions, levoglucosan, and carbonaceous components. The dataset joining chemically speciated and optical data was the input for the multi-time resolution receptor model; this approach was proven to strengthen the identification of sources, thus being particularly useful when important chemical markers (e.g. levoglucosan, elemental carbon) are not available. The final solution consisted of eight factors (nitrate, sulfate, resuspended dust, biomass burning, construction works, traffic, industry, aged sea salt); the implemented constraints led to a better physical description of factors and the bootstrap analysis supported the goodness of the solution. As for b(ap) apportionment, consistent with what was expected, biomass burning and traffic were the main contributors to aerosol absorption in the atmosphere. A relevant feature of the approach proposed in this work is the possibility of retrieving a lot of other information about optical parameters; for example, in contrast to the more traditional approach used by optical source apportionment models, here we obtained source-dependent alpha values without any a priori assumption (alpha biomass burning = 1:83 and alpha fossil fuels = 0:80). In addition, the MACs estimated for fossil fuel emissions were consistent with literature values. It is worth noting that the approach presented here can also be applied using more common receptor models (e.g. EPA PMF instead of multi-time resolution ME-2) if the dataset comprises variables with the same time resolution as well as optical data retrieved by widespread instrumentation (e.g. an Aethalometer instead of in-house instrumentation)

    Saharan dust impact in central Italy: An overview on three years elemental data records

    Get PDF
    In southern European countries, Saharan dust may episodically produce significant increases of PM10, which may also cause the exceedance of the PM10 daily limit value established by the European Directive (2008/50/EC). The detection with very high sensitivity of all the elements that constitute mineral dust makes PIXE technique a very effective tool to assess the actual impact of these episodes. In this work, a review of long-term series of elemental concentrations obtained by PIXE has been accomplished with the aim of identifying the occurrence of Saharan dust transport episodes over long periods in Tuscany and characterising them in terms of composition and impact on PM concentration, tracing back their contribution to the exceedances of the PM10 limit value. The impact of the different Saharan intrusions on PM10 showed a very high variability. During the most intense episodes (which occurred with a frequency of few times per year) the calculated soil dust concentration reached values as high as 25\u201330 \u3bcg m 123, to be compared with background values of the order of 5 \u3bcg m 123. The Saharan dust contribution was decisive to cause the exceedance of the PM10 daily limit value in the 1\u20132% of the days considered in the present work

    PM10 source apportionment based on PMF and chemical tracers during different cruises in Western Mediterranean

    Get PDF
    In the Western Mediterranean Basin, frequently exposed to high levels of air pollutants, an important source of pollution which influence the emission, is the intensive ship traffic. The Joint Research Centre of the European Commission (JRC, EC) has started a long-term monitoring program along different years over the Mediterranean Sea based on observations from a cruise ship following a regular route in the Western Mediterranean, in collaboration with the Department of Physics of University of Genoa. In this framework, an intensive PM10 sampling campaign was organized in the summer of 2011, in order to fill in the gap of data recovered (in term of PM speciation) during the previous campaigns (Schembari et al., 2014) and to get a better and complete description of PM sources. During this campaign the route of the ship was Civitavecchia-Savona-Barcelona-Palma de Mallorca- Malta (Valletta)-Palermo-Civitavecchia (see Figure 1). The PM samples were collected on Quartz and Teflon filters (47mm diameter, flow rate 2.3 m3/h) using in parallel two Sven Leckel Ingenieurburo sequential samplers, placed on the top of the cabin where the monitoring and meteorological station was located. Samples were analyzed with different techniques: Energy Dispersive X-Ray Fluorescence at the Department of Physics of Genoa (Ariola et al, 2006); Ion Chromatography (Chow and Watson, 1999) at Department of Chemistry of University of Milan; Thermo-optical analysis (Birch and Cary, 1996) at the JRC laboratory. Ion Beam Analysis measurements of the Teflon filters sampled during the week of September 2011, using simultaneously PIXE, EBS and PESA techniques (Chiari, 2005), were performed at the 3 MV Tandetron accelerator of the LABEC laboratory of INFN in Florence. The data were used to identify and characterize the main PM10 sources along the ship route, with a focus on ship emissions, through apportionment Positive Matrix Factorization receptor modelling, PMF (Paatero et al, 1994). Particular attention was given to the evidence of emissions from heavy fuel oil combustion by ships, known to be an important source of secondary sulphate aerosol. Five sources of aerosol were resolved by the PMF analysis with a new database. The analysis allows distinguishing between secondary and primary particle mass resulting from ship emissions: V and Ni were found to be suitable tracers of heavy fuel oil combustion source during the campaign. The source having the largest impact on PM10 was identified as Sulphate source by PMF. The correlations between Sulphate and V and Ni showed the influence of ship emissions on sulphate in marine air masses
    • …
    corecore