13,830 research outputs found
Dynamical phase transition in vibrational surface modes
We consider the dynamical properties of a simple model of vibrational surface
modes. We obtain the exact spectrum of surface excitations and discuss their
dynamical features. In addition to the usually discussed localized and
oscillatory regimes we also find a second phase transition where surface mode
frequency becomes purely imaginary and describes an overdamped regime.
Noticeably, this transition has an exact correspondence to the oscillatory -
overdamped transition of the standard oscillator with a frictional force
proportional to velocity.Comment: 4 pages, 3 figures. To appear in Braz. J. Phy
Exact time-reversal focusing of acoustic and quantum excitations in open cavities: The perfect inverse filter
The time-reversal mirror (TRM) prescribes the reverse playback of a signal to
focalize an acoustic excitation as a Loschmidt echo. In the quantum domain, the
perfect inverse filter (PIF) processes this signal to ensure an exact reversion
provided that the excitation originated outside the cavity delimited by the
transducers. We show that PIF takes a simple form when the initial excitation
is created inside this cavity. This also applies to the acoustical case, where
it corrects the TRM and improves the design of an acoustic bazooka. We solve an
open chaotic cavity modeling a quantum bazooka and a simple model for a
Helmholtz resonator, showing that the PIF becomes decisive to compensate the
group velocities involved in a highly localized excitation and to achieve
subwavelength resolution.Comment: 6 pages, 2 figure
Enhancing single-parameter quantum charge pumping in carbon-based devices
We present a theoretical study of quantum charge pumping with a single ac
gate applied to graphene nanoribbons and carbon nanotubes operating with low
resistance contacts. By combining Floquet theory with Green's function
formalism, we show that the pumped current can be tuned and enhanced by up to
two orders of magnitude by an appropriate choice of device length, gate voltage
intensity and driving frequency and amplitude. These results offer a promising
alternative for enhancing the pumped currents in these carbon-based devices.Comment: 3.5 pages, 2 figure
Three-frequency resonances in dynamical systems
We investigate numerically and experimentally dynamical systems having three
interacting frequencies: a discrete mapping (a circle map), an exactly solvable
model (a system of coupled ordinary differential equations), and an
experimental device (an electronic oscillator). We compare the hierarchies of
three-frequency resonances we find in each of these systems. All three show
similar qualitative behaviour, suggesting the existence of generic features in
the parameter-space organization of three-frequency resonances.Comment: See home page http://lec.ugr.es/~julya
Floquet interface states in illuminated three-dimensional topological insulators
Recent experiments showed that the surface of a three dimensional topological
insulator develops gaps in the Floquet-Bloch band spectrum when illuminated
with a circularly polarized laser. These Floquet-Bloch bands are characterized
by non-trivial Chern numbers which only depend on the helicity of the
polarization of the radiation field. Here we propose a setup consisting of a
pair of counter-rotating lasers, and show that one-dimensional chiral states
emerge at the interface between the two lasers. These interface states turn out
to be spin-polarized and may trigger interesting applications in the field of
optoelectronics and spintronics.Comment: 5 pages with 3 figures + supplemental materia
Tuning laser-induced bandgaps in graphene
Could a laser field lead to the much sought-after tunable bandgaps in
graphene? By using Floquet theory combined with Green's functions techniques,
we predict that a laser field in the mid-infrared range can produce observable
bandgaps in the electronic structure of graphene. Furthermore, we show how they
can be tuned by using the laser polarization. Our results could serve as a
guidance to design opto-electronic nano-devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter
Towards a time-reversal mirror for quantum systems
The reversion of the time evolution of a quantum state can be achieved by
changing the sign of the Hamiltonian as in the polarization echo experiment in
NMR. In this work we describe an alternative mechanism inspired by the acoustic
time reversal mirror. By solving the inverse time problem in a discrete space
we develop a new procedure, the perfect inverse filter. It achieves the exact
time reversion in a given region by reinjecting a prescribed wave function at
its periphery.Comment: 6 pages, 4 figures. Introduction modified, references added, one
figure added to improve the discussio
Informative Social Interactions
We design, field and exploit survey data from a representative sample of the French population to examine whether informative social interactions enter households.stockholding decisions. Respondents report perceptions about their circle of peers with whom they interact about financial matters, their social circle and the population. We provide evidence for the presence of an information channel through which social interactions influence perceptions and expectations about stock returns, and financial behavior. We also find evidence of mindless imitation of peers in the outer social circle, but this does not permeate as many layers of financial behavior as informative social interactions do
Niobium Silicon alloys for Kinetic Inductance Detectors
We are studying the properties of Niobium Silicon amorphous alloys as a
candidate material for the fabrication of highly sensitive Kinetic Inductance
Detectors (KID), optimized for very low optical loads. As in the case of other
composite materials, the NbSi properties can be changed by varying the relative
amounts of its components. Using a NbSi film with T_c around 1 K we have been
able to obtain the first NbSi resonators, observe an optical response and
acquire a spectrum in the band 50 to 300 GHz. The data taken show that this
material has very high kinetic inductance and normal state surface resistivity.
These properties are ideal for the development of KID. More measurements are
planned to further characterize the NbSi alloy and fully investigate its
potential.Comment: Accepted for publication on Journal of Low Temperature Physics.
Proceedings of the LTD15 conference (Caltech 2013
Extreme value distributions and Renormalization Group
In the classical theorems of extreme value theory the limits of suitably
rescaled maxima of sequences of independent, identically distributed random
variables are studied. So far, only affine rescalings have been considered. We
show, however, that more general rescalings are natural and lead to new limit
distributions, apart from the Gumbel, Weibull, and Fr\'echet families. The
problem is approached using the language of Renormalization Group
transformations in the space of probability densities. The limit distributions
are fixed points of the transformation and the study of the differential around
them allows a local analysis of the domains of attraction and the computation
of finite-size corrections.Comment: 16 pages, 5 figures. Final versio
- …