8 research outputs found
Using Classical Population Genetics Tools with Heterochroneous Data: Time Matters!
BACKGROUND:New polymorphism datasets from heterochroneous data have arisen thanks to recent advances in experimental and microbial molecular evolution, and the sequencing of ancient DNA (aDNA). However, classical tools for population genetics analyses do not take into account heterochrony between subsets, despite potential bias on neutrality and population structure tests. Here, we characterize the extent of such possible biases using serial coalescent simulations. METHODOLOGY/PRINCIPAL FINDINGS:We first use a coalescent framework to generate datasets assuming no or different levels of heterochrony and contrast most classical population genetic statistics. We show that even weak levels of heterochrony ( approximately 10% of the average depth of a standard population tree) affect the distribution of polymorphism substantially, leading to overestimate the level of polymorphism theta, to star like trees, with an excess of rare mutations and a deficit of linkage disequilibrium, which are the hallmark of e.g. population expansion (possibly after a drastic bottleneck). Substantial departures of the tests are detected in the opposite direction for more heterochroneous and equilibrated datasets, with balanced trees mimicking in particular population contraction, balancing selection, and population differentiation. We therefore introduce simple corrections to classical estimators of polymorphism and of the genetic distance between populations, in order to remove heterochrony-driven bias. Finally, we show that these effects do occur on real aDNA datasets, taking advantage of the currently available sequence data for Cave Bears (Ursus spelaeus), for which large mtDNA haplotypes have been reported over a substantial time period (22-130 thousand years ago (KYA)). CONCLUSIONS/SIGNIFICANCE:Considering serial sampling changed the conclusion of several tests, indicating that neglecting heterochrony could provide significant support for false past history of populations and inappropriate conservation decisions. We therefore argue for systematically considering heterochroneous models when analyzing heterochroneous samples covering a large time scale
Phylotranscriptomics suggests the jawed vertebrate ancestor could generate diverse helper and regulatory T cell subsets
This study was supported by The Royal Society Research Grant RG130789 awarded to HD, as well as by a University of Aberdeen Centre for Genome-Enabled Biology and Medicine PhD studentship and Marine Alliance for Science and Technology for Scotland (MASTS) research grant SG363 awarded to AKR.Peer reviewedPublisher PD
Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target
Adenovirus in Rural Côte D`Ivoire: High Diversity and Cross-Species Detection
The Taï region in Western Côte d`Ivoire is characterized by extensive overlap of human and animal habitats. This could influence patterns of adenovirus transmission between humans and domestic animals. Fecal samples from humans and various domestic animals were tested for the presence of adenoviruses by PCR. Phylogenetic and species delineation analyses were performed to further characterize the adenoviruses circulating in the region and to identify potential cross-species transmission events. Among domestic animals, adenovirus shedding was frequent (21.6% of domestic mammals and 41.5% of chickens) and the detected strains were highly diverse, several of them representing novel types. Although no evidence for zoonotic transmission of animal adenovirus was obtained, the present study provides concordant evidence in favor of common cross-species transmission of adenoviruses between different animal species and first indications for adenovirus transmission from humans to animals. These findings underline the thus far underestimated importance of reverse zoonotic transmission of viruses and of the role of domestic animals as pathogen reservoirs, “bridge species,” or intermediate hosts
Microsatellite Development and First Population Size Estimates for the Groundwater Isopod Proasellus walteri
Effective population size (N (e)) is one of the most important parameters in, ecology, evolutionary and conservation biology; however, few studies of N (e) in surface freshwater organisms have been published to date. Even fewer studies have been carried out in groundwater organisms, although their evolution has long been considered to be particularly constrained by small N (e). In this study, we estimated the contemporary effective population size of the obligate groundwater isopod: Proaselluswalteri (Chappuis, 1948). To this end, a genomic library was enriched for microsatellite motifs and sequenced using 454 GS-FLX technology. A total of 54,593 reads were assembled in 10,346 contigs or singlets, of which 245 contained candidate microsatellite sequences with suitable priming sites. Ninety-six loci were tested for amplification, polymorphism and multiplexing properties, of which seven were finally selected for N (e) estimation. Linkage disequilibrium and approximate Bayesian computation methods revealed that N (e) in this small interstitial groundwater isopod could reach large sizes (> 585 individuals). Our results suggest that environmental conditions in groundwater, while often referred to as extreme, are not necessarily associated with small N (e)
