42 research outputs found

    The body as a reservoir: locomotion and sensing with linear feedback

    Get PDF
    It is known that mass-spring nets have computational power and can be trained to reproduce oscillating patterns. In this work, we extend this idea to locomotion and sensing. We simulate systems made out of bars and springs and show that stable gaits can be maintained by these structures with only linear feedback. We then conduct a classification experiment in which the system has to distinguish terrains while maintaining an oscillatory pattern. These experiments indicate that the control of compliant robots can be simplified if one exploits the computational power of the body’s dynamics

    Design and computational aspects of compliant tensegrity robots

    Get PDF

    The spectral radius remains a valid indicator of the echo state property for large reservoirs

    Get PDF
    In the field of Reservoir Computing, scaling the spectral radius of the weight matrix of a random recurrent neural network to below unity is a commonly used method to ensure the Echo State Property. Recently it has been shown that this condition is too weak. To overcome this problem, other more involved - sufficient conditions for the Echo State Property have been proposed. In this paper we provide a large-scale experimental verification of the Echo State Property for large recurrent neural networks with zero input and zero bias. Our main conclusion is that the spectral radius method remains a valid indicator of the Echo State Property; the probability that the Echo State Property does not hold, drops for larger networks with spectral radius below unity, which are the ones of practical interest

    Developing an embodied gait on a compliant quadrupedal robot

    Get PDF
    Incorporating the body dynamics of compliant robots into their controller architectures can drastically reduce the complexity of locomotion control. An extreme version of this embodied control principle was demonstrated in highly compliant tensegrity robots, for which stable gait generation was achieved by using only optimized linear feedback from the robot's sensors to its actuators. The morphology of quadrupedal robots has previously been used for sensing and for control of a compliant spine, but never for gait generation. In this paper, we successfully apply embodied control to the compliant, quadrupedal Oncilla robot. As initial experiments indicated that mere linear feedback does not suffice, we explore the minimal requirements for robust gait generation in terms of memory and nonlinear complexity. Our results show that a memory-less feedback controller can generate a stable trot by learning the desired nonlinear relation between the input and the output signals. We believe this method can provide a very useful tool for transferring knowledge from open loop to closed loop control on compliant robots

    Reward-modulated Hebbian plasticity as leverage for partially embodied control in compliant robotics

    Get PDF
    In embodied computation (or morphological computation), part of the complexity of motor control is offloaded to the body dynamics. We demonstrate that a simple Hebbian-like learning rule can be used to train systems with (partial) embodiment, and can be extended outside of the scope of traditional neural networks. To this end, we apply the learning rule to optimize the connection weights of recurrent neural networks with different topologies and for various tasks. We then apply this learning rule to a simulated compliant tensegrity robot by optimizing static feedback controllers that directly exploit the dynamics of the robot body. This leads to partially embodied controllers, i.e., hybrid controllers that naturally integrate the computations that are performed by the robot body into a neural network architecture. Our results demonstrate the universal applicability of reward-modulated Hebbian learning. Furthermore, they demonstrate the robustness of systems trained with the learning rule. This study strengthens our belief that compliant robots should or can be seen as computational units, instead of dumb hardware that needs a complex controller. This link between compliant robotics and neural networks is also the main reason for our search for simple universal learning rules for both neural networks and robotics
    corecore