622 research outputs found

    Helicopter parenting through the lens of reddit: A text mining study

    Get PDF
    The study aimed to understand Reddit users’ experience with helicopter parenting through first- hand accounts. Text mining and natural language processing techniques were employed to extract data from the subreddit r/helicopterparents. A total of 713 original posts were processed from unstructured texts to tidy formats. Latent Dirichlet Allocation (LDA), a popular topic modeling method, was used to discover hidden themes within the corpus. The data revealed common environmental contexts of helicopter parenting (i.e., school, college, work, and home) and its implication on college decisions, privacy, and social relationships. These collectively suggested the importance of autonomy-supportive parenting and mindfulness interventions as viable solutions to the problems posed by helicopter parenting. In addition, findings lent support to past research that has identified more maternal than paternal models of helicopter parenting. Further research on the implications of the COVID-19 pandemic on helicopter parenting is warranted

    Three-years of SO2 flux measurements of Mt. Etna using an automated UV scanner array: comparison with conventional traverses and uncertainties in flux retrieval

    Get PDF
    Routine measurements of SO2 flux using the traverse method on Mt. Etna (Italy) were augmented in late 2004 when an array of automatic scanning ultraviolet spectrometers was installed. Each instrument allows one SO2 scan to be recorded every ~6 min. Here we report the methods that we developed to automatically and robustly transform SO2 profiles into SO2 flux data. Radian geometry and Fast Fourier Transform algorithm were used for reducing plume cross sections and for discriminating between volcanic plumes from those produced by water vapour clouds. Uncertainty in flux measurements depends on the accuracy of plume-height estimation, on assumptions concerning plume-geometry, and on the quality of the retrieved SO2 amounts. We compare 3 years of flux measurements made using both the automated network and “conventional” traverse methods beneath the plume. We found a good agreement between the datasets, both in terms of magnitude and in temporal variations. These results validate the Etna SO2 flux monitoring system. Emission rates are available to the 24-hour manned operations room via intranet, providing real-time information on degassing rates and plume location

    Novel retrieval of volcanic SO2 abundance from ultraviolet spectra

    Get PDF
    The recent development of fixed networks of scanning ultraviolet spectrometers for automatic determination of volcanic SO2 fluxes has created tremendous opportunities for monitoring volcanoes but has brought new challenges in processing of the substantial data flow they produce. A particular difficulty in standard implantation of differential optical absorption (DOAS) methods is the requirement for a clear-sky (plume-free) background spectrum. Our experience after four years of measurements with two UV scanner networks on Etna and Stromboli shows that wide plumes are frequently observed precluding simple selection of clear-sky spectra. We have therefore developed a retrieval approach based on simulation of the background spectrum. We describe the method here and tune it empirically by collecting clear, zenith sky spectra using calibration cells containing known amounts of SO2. We then test the performance of this optimised retrieval using clear-sky spectra collected with the same calibration cells but for variable scan angles, time of day, and season (through the course of 1 year). We find in all cases acceptable results (maximum ~12% error) for SO2 column amounts. The method is therefore very suitable for automated SO2-plume monitoring

    SO2 AND ASH VOLCANIC PLUME RETRIEVALS FROM THE 24 NOVEMBER 2006 Mt. ETNA ERUPTION USING MSG-SEVIRI DATA: SO2 VALIDATION AND ASH CORRECTION PROCEDURE

    Get PDF
    Estimation of the daily trend of sulfur dioxide and ash from the thermal infrared measurements of the Spin Enhanced Visible and Infrared Imager (SEVIRI), on board the Meteosat Second Generation (MSG) geosynchronous satellite, has been carried out. The SO2 retrieval is validated vicariously by using satellite sensors and with ground measurements. The 24 November 2006 tropospheric eruption of Etna volcano is used as a test case. MSG-SEVIRI is an optical imaging radiometer characterized by 12 spectral channels, a high temporal resolution (one image every 15 minutes), and a 10 km2 footprint. The instrument’s spectral range includes the 7.3 and 8.7 mm bands (channels 6 and 7) used for SO2 retrieval and the 10.8 and 12.0 mm (channels 9 and 10) split window bands used for ash detection and retrievals. The SO2 columnar abundance and ash are retrieved simultaneously by means of a Look-Up Table least squares fit procedure for SO2 and using a Brightness Temperature Difference algorithm for ash. The SO2 retrievals obtained using different satellite sensors such as AIRS and MODIS have been carried out and compared with SEVIRI estimations. The results were validated using the permanent mini-DOAS ground system network (FLAME) installed and operated by INGV on Mt. Etna. Results show that the simultaneous presence of SO2 and ash in a volcanic plume yields a significant error in the SO2 columnar abundance retrieval in multispectral Thermal Infrared (TIR) data. The ash plume particles with high effective radius (from 1 to 10 mm) reduce the top of atmosphere radiance in the entire TIR spectral range, including the channels used for the SO2 retrieval. The net effect is a significant SO2 overestimation. To take this effect into account a novel ash correction procedure is presented and applied to the retrieval

    miRNAs in the vitreous humor of patients affected by idiopathic epiretinal membrane and macular hole

    Get PDF
    The aim of the present study was to assess the expression of miRNAs in the Vitreous Humor (VH) of patients with Macular Hole (MH) and Epiretinal Membrane (ERM) compared to a control group. assays. Finally, we created a biological network of differentially expressed miRNA targets and their nearest neighbors. assays of the VH of patients affected by MH and ERM, with respect to controls, showed that the most differentially expressed were miR-19b (FC -9.13, p:<0.00004), mir-24 (FC -7.52, p:<0.004) and miR-142-3p (FC -5.32, p:<0.011). Our network data showed that deregulation of differentially expressed miRNAs induces an alteration of several pathways associated with genes involved in both MH and ERM.The present study suggests that disregulation of miR-19b, miR-24 and miR-142-3p, might be related to the alterations that characterize patients affected by MH and ERM

    A comprehensive interpretative model of slow slip events on Mt. Etna’s eastern flank

    Get PDF
    Starting off from a review of previous literature on kinematic models of the unstable eastern flank of Mt. Etna, we propose a new model. The model is based on our analysis of a large quantity of multidisciplinary data deriving from an extensive and diverse network of INGV monitoring devices deployed along the slopes of the volcano. Our analysis had a twofold objective: first, investigating the origin of the recently observed slow-slip events on the eastern flank of Mt. Etna; and second, defining a general kinematic model for the instability of this area of the volcano. To this end, we investigated the 2008–2013 period using data collected from different geochemical, geodetic, and seismic networks, integrated with the tectonic and geologic features of the volcano and including the volcanic activity during the observation period. The complex correlations between the large quantities of multidisciplinary data have given us the opportunity to infer, as outlined in this work, that the fluids of volcanic origin and their interrelationship with aquifers, tectonic and morphological features play a dominant role in the large scale instability of the eastern flank of Mt. Etna. Furthermore, we suggest that changes in the strain distribution due to volcanic inflation/deflation cycles are closely connected to changes in shallow depth fluid circulation. Finally, we propose a general framework for both the short and long term modeling of the large flank displacements observed.Published635–6581IT. Reti di monitoraggio e OsservazioniJCR Journalrestricte

    Halogenated triazinediones behave as antagonists of PKR1: in vitro and in vivo pharmacological characterization

    No full text
    Different prokineticin receptor antagonists, based on the triazinedione scaffold, were synthesized by a new efficient method. Here we demonstrated that 5-benzyltriazinedionessubstituted in position para of the benzyl group with halogens provide compounds endowed with interesting selectivity for the Prokineticin receptor 1 (PKR1). BRET technology indicates that such substitutionresults in increased affinity for thePKR1.The affinity for PKR2, always in M range, was never significantly affected by the para-halogen-benzyl pharmacophores. The analog bearing a para-bromobenzyl pharmacophore (PC-25) displayed the highest affinity for PKR1 (~18 times higher than the reference PC-1 that bears apara-ethyl benzyl group) and the highest selectivity (~300 times). The other halogen substitutedanalogs (PC-7, PC-18 and PC-35), showed selectivity for PKR1 more than 100 times higher than for PKR2. Using transgenic mice lacking one of the two PKRs we demonstrated that all these compounds were able to abolish the Bv8-induced hyperalgesia in mice still expressing the PKR1 at doses lower than those necessary to abolish hyperalgesia in mice expressing only the PKR2. The dose ratio reflected the in- vitro evaluated receptor selectivity

    Volcanic SO2 by UV-TIR satellite retrievals: validation by using ground-based network at Mt. Etna

    Get PDF
    Mt. Etna volcano in Italy is one of the most active degassing volcanoes worldwide, emitting a mean of 1.7 Mt/year of Sulphur Dioxide (SO2) in quiescent periods. In this work, SO2 measurements retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS), hyper-spectral Infrared Atmospheric Sounding Interferometer (IASI) and the second Global Ozone Monitoring Experiment (GOME-2) data are compared with the ground-based data from the FLux Automatic MEasurement monitoring network (FLAME). Among the eighteen lava fountain episodes occurring at Mt. Etna in 2011, the 10 April paroxysmal event has been selected as a case-study for the simultaneous observation of the SO2 cloud by satellite and ground-based sensors. For each data-set two retrieval techniques were adopted and the measurements of SO2 mass and flux with their respective uncertainty were obtained. With respect to the FLAME SO2 mass of 4.5 Gg, MODIS, IASI and GOME-2 differ by about 10%, 15% and 30%, respectively. The SO2 flux correlation coefficient between MODIS and FLAME is 0.84. All the retrievals within the respective errors are in agreement with the ground-based measurements supporting the validity of these space measurements
    corecore