315 research outputs found
Determinants of soil organic matter chemistry in maritime temperate forest ecosystems
While the influence of climate, vegetation, management and abiotic site factors on total carbon budgets and turn-over is intensively assessed, the influences of these ecosystem properties on the chemical complexity of soil organic matter (SOM) remains poorly understood. This study addresses the chemical composition of NaOH-extracted SOM from maritime temperate forest sites in Flanders (Belgium) by pyrolysis-GC/MS. The studied forests were chosen based on dominant tree species (Pinus sylvestris, Fagus sylvatica, Quercus robur and Populus spp.), soil texture and soil-moisture conditions. Differences in extractable-SOM pyrolysis products were correlated to site variables including dominant tree species, management of the woody biomass, site history, soil properties, total carbon stocks and indicators for microbial activity. Despite of a typical high intercorrelation between these site variables, the influence of the dominant tree species is prominent. The extractable-SOM composition is strongly correlated to litter quality and available nutrients. In nutrient-poor forests with low litter quality, the decomposition of relatively recalcitrant compounds (i.e. short and mid-chain alkanes/alkenes and aromatic compounds) appears hampered, causing a relative accumulation of these compounds in the soil. However, if substrate quality is favorable, no accumulations of recalcitrant compounds were observed, not even under high soil-moisture conditions. Former heathland vegetation still had a profound influence on extractable-SOM chemistry of young pine forests after a minimum of 60 year
Minimum sample size for developing a multivariable prediction model using multinomial logistic regression
Aims
Multinomial logistic regression models allow one to predict the risk of a categorical outcome with > 2 categories. When developing such a model, researchers should ensure the number of participants (n)) is appropriate relative to the number of events (Ek)) and the number of predictor parameters (pk) for each category k. We propose three criteria to determine the minimum n required in light of existing criteria developed for binary outcomes.
Proposed criteria
The first criterion aims to minimise the model overfitting. The second aims to minimise the difference between the observed and adjusted R2 Nagelkerke. The third criterion aims to ensure the overall risk is estimated precisely. For criterion (i), we show the sample size must be based on the anticipated Cox-snell R2 of distinct ‘one-to-one’ logistic regression models corresponding to the sub-models of the multinomial logistic regression, rather than on the overall Cox-snell R2 of the multinomial logistic regression.
Evaluation of criteria
We tested the performance of the proposed criteria (i) through a simulation study and found that it resulted in the desired level of overfitting. Criterion (ii) and (iii) were natural extensions from previously proposed criteria for binary outcomes and did not require evaluation through simulation.
Summary
We illustrated how to implement the sample size criteria through a worked example considering the development of a multinomial risk prediction model for tumour type when presented with an ovarian mass. Code is provided for the simulation and worked example. We will embed our proposed criteria within the pmsampsize R library and Stata modules
- …