373 research outputs found

    Comparative performance of rural water supplies during drought

    Get PDF
    As rural African communities experience more frequent and extreme droughts, it is increasingly important that water supplies are climate resilient. Using a unique temporal dataset we explore rural water supply (n = 5196) performance during the 2015–16 drought in Ethiopia. Mean functionality ranged from 60% for motorised boreholes to 75% for hand-pumped boreholes. Real-time monitoring and responsive operation and maintenance led to rapid increases in functionality of hand-pumped and, to a lesser extent, motorised boreholes. Increased demand was placed on motorised boreholes in lowland areas as springs, hand-dug-wells and open sources failed. Most users travelled >1 h to access motorised boreholes but 30 m) groundwater performed best during the drought. Prioritising access to groundwater via multiple improved sources and a portfolio of technologies, such as hand-pumped and motorised boreholes, supported by responsive and proactive operation and maintenance, increases rural water supply resilience

    Once You See It, You Can’t Unsee It?: Racial Justice Activism and Articulations of Whiteness Among White Collegiate Athlete Activists

    Get PDF
    The goal of this study was to examine how athletes holding privileged racial identities understand their whiteness as they engage in racial justice activism. Drawing from 12 semistructured interviews with white collegiate athletes who have engaged in activism for racial justice, we identified four higher order themes which we situate within a broader discussion of how each theme either reinforces or disrupts racial power: articulations of (a) racial consciousness, (b) white privilege, (c) white empathy, and (d) white accountability. While the white accountability theme has the potential to disrupt racial power due to its relying on rigorous self-critique, the remaining themes pointed to limited understandings of the systemic nature of racism, which can thus inadvertently (re)produce white supremacy even when engaging in activism for racial justice. Limitations, implications, and future directions for research are discussed to empower more white athletes to reflect critically on whiteness and facilitate systemic change

    A hidden crisis: strengthening the evidence base on the sustainability of rural groundwater supplies: results from a pilot study in Uganda

    Get PDF
    Extending and sustaining access to rural water supplies remains central to improving the health and livelihoods of poor people, particularly women, in Africa, where 400 million rural inhabitants have no form of utility provided water, and universal access to water hinges on accelerated development of groundwater (UN 2013). The ‘future proofing’ of groundwater investments is therefore vital, especially in the context of global and local trends including demographic shifts, environmental impacts of human activity and climate change (Taylor et al. 2013). The emphasis, in recent years, on accelerating access to new infrastructure has obscured a hidden crisis of failure. More than 30% of sources are non‐functional within a few years of construction (Rietveld et al. 2009, RWSN 2009, Lockwood et al. 2011) and a greater number are seasonal (for example 50% in Sierra Leone) (MoEWR 2012). The accumulated costs to governments, donors, and, above all, rural people, are enormous. The original benefits generated by the new infrastructure – improved health, nutrition, time savings, education, particularly for the poorest – are lost if improved services cannot be sustained. The cumulative effect of rural water supply failure in Africa over the past 20 years has been estimated by the World Bank to represent a lost investment in excess of $1.2 billion. Critically, there is limited data or analysis on why sources are non‐functional and therefore little opportunity to learn from past mistakes. This report provides a summary of the work undertaken by the UK‐funded UPGro research programme ('Unlocking the Potential for Groundwater for the Poor') for sub‐Saharan Africa (SSA) funded by the Natural Environment Research Council (NERC), the Economic and Social Research Council (ESRC) and the Department for International Development (DfID). The Catalyst Grant project ‘A Hidden Crisis’ was aimed at developing a methodology and toolbox to investigate the causes of failure in groundwater‐based water services in SSA, which could form the foundation for more substantial and larger‐scale research in the future to develop a statistically significant evidence base to examine water point functionality and the underlying causes of failure across a range of physical, social, institutional and governance environments in SSA. To test the toolbox and methodology developed, a pilot study was conducted in northeast Uganda Overall, the approach and methods developed in the catalyst project have been shown to make a significant step towards developing a replicable and robust methodology which can be used to generate a systematic evidence base for supply failure. The work has gone a significant way to encapsulating the complexity of the interlinked aspects of the problem, balancing the natural science and engineering (“technical”) aspects of the research with those concerning the ability of communities to manage and maintain their water points (the “social” aspects). The multiplicity of interlinked causes of water point failure was explicitly acknowledged and taken into account through the use of multi‐disciplinary field and analytical methods within the toolbox and in selection of the research team. The multi‐disciplinary methods of investigation used were highly practical and appropriate to the information sought, and based on detailed observational science

    A hidden crisis: strengthening the evidence base on the current failure of rural groundwater supplies

    Get PDF
    New ambitious international goals for universal access to safe drinking water depend critically on the ability of development partners to accelerate and sustain access to groundwater. However, available evidence (albeit fragmented and methodologically unclear) indicates >30% of new groundwater-based supplies are non-functional within a few years of construction. Critically, in the absence of a significant systematic evidence base or analysis on supply failures, there is little opportunity to learn from past mistakes, to ensure more sustainable services can be developed in the future. This work presents a new and robust methodology for investigating the causes of non-functionality, developed by an interdisciplinary team as part of a UK-funded development research project. The approach was successfully piloted within a test study in NE Uganda, and forms a basis for future research to develop a statistically significant systematic evidence base to unravel the underlying causes of failur

    The scaling of postcranial muscles in cats (Felidae) I: forelimb, cervical, and thoracic muscles

    Get PDF
    The body masses of cats (Mammalia, Carnivora, Felidae) span a ~300‐fold range from the smallest to largest species. Despite this range, felid musculoskeletal anatomy remains remarkably conservative, including the maintenance of a crouched limb posture at unusually large sizes. The forelimbs in felids are important for body support and other aspects of locomotion, as well as climbing and prey capture, with the assistance of the vertebral (and hindlimb) muscles. Here, we examine the scaling of the anterior postcranial musculature across felids to assess scaling patterns between different species spanning the range of felid body sizes. The muscle architecture (lengths and masses of the muscle‐tendon unit components) for the forelimb, cervical and thoracic muscles was quantified to analyse how the muscles scale with body mass. Our results demonstrate that physiological cross‐sectional areas of the forelimb muscles scale positively with increasing body mass (i.e. becoming relatively larger). Many significantly allometric variables pertain to shoulder support, whereas the rest of the limb muscles become relatively weaker in larger felid species. However, when phylogenetic relationships were corrected for, most of these significant relationships disappeared, leaving no significantly allometric muscle metrics. The majority of cervical and thoracic muscle metrics are not significantly allometric, despite there being many allometric skeletal elements in these regions. When forelimb muscle data were considered in isolation or in combination with those of the vertebral muscles in principal components analyses and MANOVAs, there was no significant discrimination among species by either size or locomotory mode. Our results support the inference that larger felid species have relatively weaker anterior postcranial musculature compared with smaller species, due to an absence of significant positive allometry of forelimb or vertebral muscle architecture. This difference in strength is consistent with behavioural changes in larger felids, such as a reduction of maximal speed and other aspects of locomotor abilities

    A semi-synthetic oligosaccharide conjugate vaccine candidate confers protection against Streptococcus pneumoniae serotype 3 infection

    Get PDF
    The identification of immunogenic glycotopes that render glycoconjugate vaccines protective is key to improving vaccine efficacy. Synthetic oligosaccharides are an attractive alternative to the heterogeneous preparations of purified polysaccharides that most marketed glycoconjugate vaccines are based on. To investigate the potency of semi-synthetic glycoconjugates, we chose the least-efficient serotype in the current pneumococcal conjugate vaccine Prevnar 13, Streptococcus pneumoniae serotype 3 (ST3). Glycan arrays containing synthetic ST3 repeating unit oligosaccharides were used to screen a human reference serum for antibodies and to define the recognition site of two ST3-specific protective monoclonal antibodies. The glycan array screens identified a tetrasaccharide that was selected for in-depth immunological evaluation. The tetrasaccharide-CRM197 carrier protein conjugate elicited protective immunity as evidenced by opsonophagocytosis assays and protection against pneumonia caused by ST3 in mice. Formulation of the defined protective lead candidate glycotope has to be further evaluated to elicit optimal long-term immunity

    Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress

    Get PDF
    Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro. In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research

    Groundwater resources in the Indo-Gangetic Basin : resilience to climate change and abstraction

    Get PDF
    Groundwater within the Indo‐Gangetic Basin (IGB) alluvial aquifer system forms one of the world’s most important and heavily exploited reservoirs of freshwater. In this study we have examined the groundwater system through the lens of its resilience to change – both from the impact of climate change and increases in abstraction. This has led to the development of a series of new maps for the IGB aquifer, building on existing datasets held in Pakistan, India, Nepal and Bangladesh, a review of approximately 500 reports and papers, and three targeted field studies on under‐researched topics within the region. The major findings of the study are described below. The IGB groundwater system 1. The IGB alluvial aquifer system comprises a large volume of heterogeneous unconsolidated sediment in a complex environmental setting. Annual rainfall varies from 2000mm in the Bengal basin, and the system is dissected by the major river systems of the Indus, Ganges and Brahmaputra. The groundwater system has been modified by the introduction of large scale canal irrigation schemes using water from the Indus and Ganges since the 19th and early 20th centuries. 2. High yielding tubewells can be sustained in most parts of the alluvial aquifer system; permeability is often in the range of 10 – 60 m/d and specific yield (the drainable porosity) varies from 5 – 20%, making it highly productive. 3. High salinity and elevated arsenic concentrations exist in parts of the basin limiting the usefulness of the groundwater resource. Saline water predominates in the Lower Indus, and near to the coast in the Bengal Delta, and is also a major concern in the Middle Ganges and Upper Ganges (covering much of the Punjab Region in Pakistan, southern Punjab, Haryana and parts of Uttar Pradesh in India). Arsenic severely impacts the development of shallow groundwater in the fluvial influenced deltaic area of the Bengal Basin. 4. Recharge to the IGB aquifer system is substantial and dynamic, controlled by monsoonal rainfall, leakage from canals, river infiltration and irrigation returns. Recharge from rainfall can occur even with low annual rainfall (350 mm) and appears to dominate where rainfall is higher (> 750 mm). Canal leakage is also highly significant and constitutes the largest proportion of groundwater recharge in the drier parts of the aquifer, partially mitigating the effects of abstraction on groundwater storage. 5. Deep groundwater (>150 m) in the Bengal basin has strategic value for water supply, health and economic development. Excessive abstraction poses a greater threat to the quality of this deep groundwater than climate change. Heavy pumping may induce the downward migration of arsenic in parts of Bangladesh, and of saline water in coastal regions, but field evidence and modelling both suggest that deep groundwater abstraction for public water supply in southern Bangladesh is in general secure against widespread ingress of arsenic and saline water for at least 100 years

    A hidden crisis: strengthening the evidence base on the current failures of rural groundwater supplies

    Get PDF
    New ambitious international goals for universal access to safe drinking water depend critically on the ability of development partners to accelerate and sustain access to groundwater. However, available evidence (albeit fragmented and methodologically unclear) indicates >30% of new groundwater-based supplies are non-functional within a few years of construction. Critically, in the absence of a significant systematic evidence base or analysis on supply failures, there is little opportunity to learn from past mistakes, to ensure more sustainable services can be developed in the future. This work presents a new and robust methodology for investigating the causes of non-functionality, developed by an interdisciplinary team as part of an UPGro catalyst grant. The approach was successfully piloted within a test study in NE Uganda, and forms a basis for future research to develop a statistically significant systematic evidence base to unravel the underlying causes of failure
    • 

    corecore