17 research outputs found

    Analysis of Relative Motion between Femoral Head and Acetabular Cup and Advances in Computation of the Wear Factor for the Prosthetic Hip Joint

    Get PDF
    The amount and type of wear produced in the prosthetic hip joint depends on the type of relative motion between the femoral head and the acetabular cup. Wear particles removed from the bearing surfaces of the joint can cause adverse tissue reactions resulting in osteolysis and ultimately in loosening of the fixation of the implant. When designing a simulator for evaluation of prospective materials for artificial hip joints it is important to verify that the type of relative motion at the articulation is similar to that produced in walking, involving continually changing direction of sliding. This paper is an overview of recent research done at Helsinki University of Technology on the analysis of the relationship between relative motion and wear in the prosthetic hip joint.To analyze the relative motion, software for computing tracks, referred to as slide tracks, drawn on the counterface by marker points on the bearing surface was developed and experimentally verified. The overall relative motion of the joint was illustrated by a slide track pattern, produced by many points. The patterns resulting from walking motion and from motion produced in ten contemporary hip simulator types were compared. The slide track computations were not limited to illustrational purposes but offered a basis for computing variations of sliding distances, sliding speeds and direction of sliding during a cycle. This was done for the slide track termed the force track, drawn by the resultant contact force. In addition, the product of the instantaneous load and increment of sliding distance was numerically integrated over a cycle. This track integral of load had so far not been determined for the majority of contemporary hip simulators. The track integral can be used in determining the wear factor, making it possible to compare clinical wear rates with those produced by hip simulators. The computation of the wear factor was subsequently improved by replacing the track integral of the resultant contact force with a surface integral computed as the sum of track integrals of a large number of smaller normal forces obtained by discretizing the contact pressure distribution. The slide track software could also be utilized in the conceptual design of new simulators because it was possible to rapidly investigate the effect of changes to the motion waveform amplitudes or phases, or of omitting certain waveforms to simplify the design of a simulator.The slide track analysis showed that walking motion produced mainly open tracks on the center of contact, implying continually changing direction of sliding. This phenomenon, which is crucial for obtaining the correct wear mechanisms for acetabular cups made of polyethylene, was reproduced by simulators having abduction-adduction motion in addition to flexion-extension motion. In the force track computations involving contemporary simulators with the common femoral head size of 28 mm, the sliding distance per cycle and the force track integral per cycle ranged from 19.7 to 34.3 mm and from 17.4 to 43.5 N m, respectively. The average sliding speed ranged from 19.7 to 49.0 mm/s. The sum of track integrals computed with forces obtained by discretizing the contact pressure distribution reached a substantially higher value than the track integral obtained with the resultant contact force only. This suggests that the wear factor is actually overestimated when computed in the conventional way by dividing the wear rate with the force track integral

    Transient elastohydrodynamic lubrication analysis of a novel metal-on-metal hip prosthesis with a non-spherical femoral bearing surface

    No full text
    Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry
    corecore