147 research outputs found

    Structural behaviour of copper chloride catalysts during the chlorination of CO to phosgene

    Get PDF
    The interaction of CO with an attapulgite-supported Cu(II)Cl2 catalyst has been examined in a micro-reactor arrangement. CO exposure to the dried, as-received catalyst at elevated temperatures leads to the formation of CO2 as the only identifiable product. However, phosgene production can be induced by a catalyst pre-treatment where the supported Cu(II)Cl2 sample is exposed to a diluted stream of chlorine. Subsequent CO exposure at ~ 370°C then leads to phosgene production. In order to investigate the origins of this atypical set of reaction characteristics, a series of x-ray absorption experiments were performed that were supplemented by DFT calculations. XANES measurements establish that at the elevated temperatures connected with phosgene formation, the catalyst is comprised of Cu+ and a small amount of Cu2+. Moreover, the data show that unique to the chlorine pre-treated sample, CO exposure at elevated temperature results in a short-lived oxidation of the copper. On the basis of calculated CO adsorption energies, DFT calculations indicate that a mixed Cu+/Cu2+ catalyst is required to support CO chemisorption

    Spectroscopic characterization of model compounds, reactants, and byproducts connected with an isocyanate production chain

    Get PDF
    Aromatic amines and amine hydrochloride salts play an important part in certain large-scale isocyanate production chains. For the first time, via a combination of periodic-DFT calculations, infrared spectroscopy, and inelastic neutron scattering, this work provides a comprehensive vibrational assignment of 4-benzylaniline (C6H4CH2C6H4NH2), 4,4′-methylenedianiline (H2NC6H4CH2C6H4NH2), and their associated amine hydrochloride salts. Deuterated analogues are additionally utilized to assist vibrational assignments. The heightened awareness of vibrational transitions for these technically relevant reagents and byproducts provides the opportunity to apply infrared spectroscopy as an in-line diagnostic tool within the industrial-scale process operation

    Rapid Synthesis of [Au₂₅(Cys)₁₈] Nanoclusters via Carbon Monoxide in Microfluidic Liquid-Liquid Segmented Flow System and their Antimicrobial Performance

    Get PDF
    Atomically precise thiolate-gold nanoclusters with well-defined structures attract attention for use in various applications. However, most of the recently reported synthetic methods rely on prolonged synthesis times (a few hours to days) in order to produce high purity materials with a single cluster size. Such extended synthesis times make these processes ill-suited for adaptation to industrial scale production with continuous flow. In this work, an improved method for the synthesis of thiolated Au25 nanoclusters is presented utilising a microfluidic system and CO-mediated reduction. The optimized system, based on a coiled flow inverter with inner diameter of 1 mm operating at 80 °C and 500 kPa took only 3 min for the synthesis of atomically precise cysteine-capped [Au25(Cys)18] nanoclusters, as characterized by ultraviolet–visible spectroscopy and electrospray ionization mass spectrometry. The productivity of the system was increased by using higher reactant concentrations which led to a throughput of 0.9 gAu per day, without changing the reaction time or affecting the product purity. The Au nanoclusters were used as photobactericidal enhancement materials. In antimicrobial testing against S. aureus, encapsulation of the Au nanoclusters into crystal violet impregnated silicone showed high photobactericidal activity (~1.7 log reduction in viable bacteria) upon 6 h illumination of white light at ~312 lx, while crystal violet did not show significant photobactericidal activity on its own

    Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina

    Get PDF
    Although photoexcitation has been employed to unlock the low-temperature equilibrium regimes of thermal catalysis, mechanism underlining potential interplay between electron excitations and surface chemical processes remains elusive. Here, we report an associative zinc oxide band-gap excitation and copper plasmonic excitation that can cooperatively promote methanol-production at the copper-zinc oxide interfacial perimeter of copper/zinc oxide/alumina (CZA) catalyst. Conversely, selective excitation of individual components only leads to the promotion of carbon monoxide production. Accompanied by the variation in surface copper oxidation state and local electronic structure of zinc, electrons originating from the zinc oxide excitation and copper plasmonic excitation serve to activate surface adsorbates, catalysing key elementary processes (namely formate conversion and hydrogen molecule activation), thus providing one explanation for the observed photothermal activity. These observations give valuable insights into the key elementary processes occurring on the surface of the CZA catalyst under light-heat dual activation

    Controlling the Production of Acid Catalyzed Products of Furfural Hydrogenation by Pd/TiO2

    Get PDF
    We demonstrate a modified sol-immobilization procedure using (MeOH)x/(H2O)1-x solvent mixtures to prepare Pd/TiO2 catalysts that are able to reduce the formation of acid catalyzed products, e. g. ethers, for the hydrogenation of furfural. Transmission electron microscopy found a significant increase in polyvinyl alcohol (PVA) deposition at the metal-support interface and temperature programmed reduction found a reduced uptake of hydrogen, compared to an established Pd/TiO2 preparation. We propose that the additional PVA hinders hydrogen spillover onto the TiO2 support and limits the formation of Brønsted acid sites, required to produce ethers. Elsewhere, the new preparation route was able to successfully anchor colloidal Pd to the TiO2 surface, without the need for acidification. This work demonstrates the potential for minimizing process steps as well as optimizing catalyst selectivity – both important objectives for sustainable chemistry

    The highly surprising behaviour of diphosphine ligands in iron-catalysed Negishi cross-coupling

    Get PDF
    Iron-catalysed cross-coupling is undergoing explosive development, but mechanistic understanding lags far behind synthetic methodology. Here, we find that the activity of iron–diphosphine pre-catalysts in the Negishi coupling of benzyl halides is strongly dependent on the diphosphine, but the ligand does not appear to be coordinated to the iron during turnover. This was determined using time-resolved in operando X-ray absorption fine structure spectroscopy employing a custom-made flow cell and confirmed by 31P NMR spectroscopy. While the diphosphine ligands tested are all able to coordinate to iron(II), in the presence of excess zinc(II)—as in the catalytic reaction—they coordinate predominantly to the zinc. Furthermore, combined synthetic and kinetic investigations implicate the formation of a putative mixed Fe–Zn(dpbz) species before the rate-limiting step of catalysis. These unexpected findings may not only impact the field of iron-catalysed Negishi cross-coupling, but potentially beyond to reactions catalysed by other transition metal/diphosphine complexes

    Quality Assessment in Crowdsourced Indigenous Language Transcription

    Get PDF
    The digital Bleek and Lloyd Collection is a rare collection that contains artwork, notebooks and dictionaries of the indigenous people of Southern Africa. The notebooks, in particular, contain stories that encode the language, culture and beliefs of these people, handwritten in now-extinct languages with a specialised notation system. Previous attempts have been made to convert the approximately 20000 pages of text to a machine-readable form using machine learning algorithms but, due to the complexity of the text, the recognition accuracy was low. In this paper, a crowdsourcing method is proposed to transcribe the manuscripts, where non-expert volunteers transcribe pages of the notebooks using an online tool. Experiments were conducted to determine the quality and consistency of transcriptions. The results show that volunteeers are able to produce reliable transcriptions of high quality. The inter-transcriber agreement is 80% for |Xam text and 95% for English text. When the |Xam text transcriptions produced by the volunteers are compared with a gold standard, the volunteers achieve an average accuracy of 64.75%, which exceeded that in previous work. Finally, the degree of transcription agreement correlates with the degree of transcription accuracy. This suggests that the quality of unseen data can be assessed based on the degree of agreement among transcribers

    Operando XAFS investigation on the effect of ash deposition on three-way catalyst used in Gasoline Particulate Filters and the effect of the manufacturing process on the catalytic activity

    Get PDF
    Platinum group metals (PGM) such as palladium and rhodium based catalysts are currently being implemented in Gasoline Particulate Filter (GPF) autoexhaust aftertreatment systems. However, little is known about how the trapped particulate matter, such as the incombustible ash, interacts with the catalyst and so may affect its performance. This operando study follows the evolution of the Pd found in two different model GPF systems: one containing ash components extracted from a GPF and another from a catalyst washcoat prior to adhesion onto the GPF. We show that the catalytic activity of the two systems vary when compared with a 0 g ash containing GPF. Compared to the 0 g ash sample the 20 g ash containing sample had a higher CO light off temperature, in addition, an oscillation profile for CO, CO2 and O2 was observed, which is speculated to be a combination of CO oxidation, C deposition via a Boudouard Reaction and further partial oxidation of the deposited species to CO. During the ageing procedure the washcoat sample reduces NO at a lower temperature than the 0 g ash sample. However, post ageing the 0 g ash sample recovers and both samples reduce NO at 310 circleC. In comparison, the 20 g ash GPF sample maintains a higher NO reduction temperature of 410 circleC post ageing, implying that the combination of high temperature ageing and presence of ash has an irreversible negative effect on catalyst performance

    Combined molnupiravir-nirmatrelvir treatment improves the inhibitory effect on SARS-CoV-2 in macaques

    Get PDF
    The periodic emergence of SARS-CoV-2 variants of concern (VOCs) with unpredictable clinical severity and ability to escape preexisting immunity emphasizes the continued need for antiviral interventions. Two small molecule inhibitors, molnupiravir (MK-4482), a nucleoside analog, and nirmatrelvir (PF-07321332), a 3C-like protease inhibitor, have recently been approved as monotherapy for use in high-risk patients with COVID-19. As preclinical data are only available for rodent and ferret models, here we assessed the efficacy of MK-4482 and PF-07321332 alone and in combination against infection with the SARS-CoV-2 Delta VOC in the rhesus macaque COVID-19 model. Macaques were infected with the SARS-CoV-2 Delta variant and treated with vehicle, MK-4482, PF-07321332, or a combination of MK-4482 and PF-07321332. Clinical exams were performed at 1, 2, and 4 days postinfection to assess disease and virological parameters. Notably, use of MK-4482 and PF-07321332 in combination improved the individual inhibitory effect of both drugs, resulting in milder disease progression, stronger reduction of virus shedding from mucosal tissues of the upper respiratory tract, stronger reduction of viral replication in the lower respiratory tract, and reduced lung pathology. Our data strongly indicate superiority of combined MK-4482 and PF-07321332 treatment of SARS-CoV-2 infections as demonstrated in the closest COVID-19 surrogate model of human infection
    corecore