12 research outputs found

    Lazy auctions for multi-robot collision avoidance and motion control under uncertainty

    Get PDF
    We present an auction-flavored multi-robot planning mechanism where coordination is to be achieved on the occupation of atomic resources modeled as binary inter-robot constraints. Introducing virtual obstacles, we show how this approach can be combined with particlebased obstacle avoidance methods, offering a decentralized, auction-based alternative to previously established centralized approaches for multirobot open-loop control. We illustrate the effectiveness of our new approach by presenting simulations of typical spatially-continuous multirobot path-planning problems and derive bounds on the collision probability in the presence of uncertainty

    Multi-Agent Planning with Mixed-Integer Programming and Adaptive Interaction Constraint Generation (Extended Abstract)

    No full text
    We consider multi-agent planning in which the agents' optimal plans are solutions to mixed-integer programs (MIP) that are coupled via integer constraints. While in principle, one could find the joint solution by combining the separate problems into one large joint centralized MIP, this approach rapidly becomes intractable for growing numbers of agents and large problem domains. To address this issue, we propose an iterative approach that combines conflict detection with constraint-generation whereby the agents plan repeatedly until all conflicts are resolved. In each planning iteration, the agents plan with as few other agents and interaction-constraints as possible. This yields an optimal method that can reduce computation markedly. We test our approach in the context of multi-agent collision avoidance in graphs with indivisible flows. Our initial simulations on randomized graph routing problems confirm predicted optimality and reduced computational effort

    The Rise of Transnational Networks in Climate Change Governance: A Study in Hybridity

    No full text
    corecore