1,793 research outputs found

    Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse v1

    Get PDF
    A characteristic feature in the primary visual cortex is that visual responses are suppressed as a stimulus extends beyond the classical receptive field. Here, we examined the role of inhibitory neurons expressing somatostatin (SOM(+)) or parvalbumin (PV(+)) on surround suppression and preferred receptive field size. We recorded multichannel extracellular activity in V1 of transgenic mice expressing channelrhodopsin in SOM(+) neurons or PV(+) neurons. Preferred size and surround suppression were measured using drifting square-wave gratings of varying radii and at two contrasts. Consistent with findings in primates, we found that the preferred size was larger for lower contrasts across all cortical depths, whereas the suppression index (SI) showed a trend to decrease with contrast. We then examined the effect of these metrics on units that were suppressed by photoactivation of either SOM(+) or PV(+) neurons. When activating SOM(+) neurons, we found a significant increase in SI at cortical depths >400 mum, whereas activating PV(+) neurons caused a trend toward lower SIs regardless of cortical depth. Conversely, activating PV(+) neurons significantly increased preferred size across all cortical depths, similar to lowering contrast, whereas activating SOM(+) neurons had no systematic effect on preferred size across all depths. These data suggest that SOM(+) and PV(+) neurons contribute differently to spatial integration. Our findings are compatible with the notion that SOM(+) neurons mediate surround suppression, particularly in deeper cortex, whereas PV(+) activation decreases the drive of the input to cortex and therefore resembles the effects on spatial integration of lowering contrast

    Functional Specialization of Seven Mouse Visual Cortical Areas

    Get PDF
    SummaryTo establish the mouse as a genetically tractable model for high-order visual processing, we characterized fine-scale retinotopic organization of visual cortex and determined functional specialization of layer 2/3 neuronal populations in seven retinotopically identified areas. Each area contains a distinct visuotopic representation and encodes a unique combination of spatiotemporal features. Areas LM, AL, RL, and AM prefer up to three times faster temporal frequencies and significantly lower spatial frequencies than V1, while V1 and PM prefer high spatial and low temporal frequencies. LI prefers both high spatial and temporal frequencies. All extrastriate areas except LI increase orientation selectivity compared to V1, and three areas are significantly more direction selective (AL, RL, and AM). Specific combinations of spatiotemporal representations further distinguish areas. These results reveal that mouse higher visual areas are functionally distinct, and separate groups of areas may be specialized for motion-related versus pattern-related computations, perhaps forming pathways analogous to dorsal and ventral streams in other species

    Can a strongly interacting Higgs boson rescue SU(5)?

    Full text link
    Renormalization group analyses show that the three running gauge coupling constants of the Standard Model do not become equal at any energy scale. These analyses have not included any effects of the Higgs boson's self-interaction. In this paper, I examine whether these effects can modify this conclusion.Comment: 8 pages (plus 4 postscript figures

    Linear Response Calculations of Spin Fluctuations

    Full text link
    A variational formulation of the time--dependent linear response based on the Sternheimer method is developed in order to make practical ab initio calculations of dynamical spin susceptibilities of solids. Using gradient density functional and a muffin-tin-orbital representation, the efficiency of the approach is demonstrated by applications to selected magnetic and strongly paramagnetic metals. The results are found to be consistent with experiment and are compared with previous theoretical calculations.Comment: 11 pages, RevTex; 3 Figures, postscript, high-resolution printing (~1200dpi) is desire

    A Simple Model of Epidemics with Pathogen Mutation

    Full text link
    We study how the interplay between the memory immune response and pathogen mutation affects epidemic dynamics in two related models. The first explicitly models pathogen mutation and individual memory immune responses, with contacted individuals becoming infected only if they are exposed to strains that are significantly different from other strains in their memory repertoire. The second model is a reduction of the first to a system of difference equations. In this case, individuals spend a fixed amount of time in a generalized immune class. In both models, we observe four fundamentally different types of behavior, depending on parameters: (1) pathogen extinction due to lack of contact between individuals, (2) endemic infection (3) periodic epidemic outbreaks, and (4) one or more outbreaks followed by extinction of the epidemic due to extremely low minima in the oscillations. We analyze both models to determine the location of each transition. Our main result is that pathogens in highly connected populations must mutate rapidly in order to remain viable.Comment: 9 pages, 11 figure

    Optimization of Robustness of Complex Networks

    Full text link
    Networks with a given degree distribution may be very resilient to one type of failure or attack but not to another. The goal of this work is to determine network design guidelines which maximize the robustness of networks to both random failure and intentional attack while keeping the cost of the network (which we take to be the average number of links per node) constant. We find optimal parameters for: (i) scale free networks having degree distributions with a single power-law regime, (ii) networks having degree distributions with two power-law regimes, and (iii) networks described by degree distributions containing two peaks. Of these various kinds of distributions we find that the optimal network design is one in which all but one of the nodes have the same degree, k1k_1 (close to the average number of links per node), and one node is of very large degree, k2N2/3k_2 \sim N^{2/3}, where NN is the number of nodes in the network.Comment: Accepted for publication in European Physical Journal

    Exact solution of the Zeeman effect in single-electron systems

    Full text link
    Contrary to popular belief, the Zeeman effect can be treated exactly in single-electron systems, for arbitrary magnetic field strengths, as long as the term quadratic in the magnetic field can be ignored. These formulas were actually derived already around 1927 by Darwin, using the classical picture of angular momentum, and presented in their proper quantum-mechanical form in 1933 by Bethe, although without any proof. The expressions have since been more or less lost from the literature; instead, the conventional treatment nowadays is to present only the approximations for weak and strong fields, respectively. However, in fusion research and other plasma physics applications, the magnetic fields applied to control the shape and position of the plasma span the entire region from weak to strong fields, and there is a need for a unified treatment. In this paper we present the detailed quantum-mechanical derivation of the exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static magnetic field. Notably, these formulas are not much more complicated than the better-known approximations. Moreover, the derivation allows the value of the electron spin gyromagnetic ratio gsg_s to be different from 2. For completeness, we then review the details of dipole transitions between two hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script

    Lattice Discretization in Quantum Scattering

    Get PDF
    The utility of lattice discretization technique is demonstrated for solving nonrelativistic quantum scattering problems and specially for the treatment of ultraviolet divergences in these problems with some potentials singular at the origin in two and three space dimensions. This shows that lattice discretization technique could be a useful tool for the numerical solution of scattering problems in general. The approach is illustrated in the case of the Dirac delta function potential.Comment: 9 page

    Kinetics of four-wave mixing for a 2D magneto-plasma in strong magnetic fields

    Full text link
    We investigate the femtosecond kinetics of an optically excited 2D magneto-plasma at intermediate and high densities under a strong magnetic field perpendicular to the quantum well (QW). We assume an additional weak lateral confinement which lifts the degeneracy of the Landau levels partially. We calculate the femtosecond dephasing and relaxation kinetics of the laser pulse excited magneto-plasma due to bare Coulomb potential scattering, because screening is under these conditions of minor importance. In particular the time-resolved and time-integrated four-wave mixing (FWM) signals are calculated by taking into account three Landau subbands in both the valance and the conduction band assuming an electron-hole symmetry. The FWM signals exhibit quantum beats mainly with twice the cyclotron frequency. Contrary to general expectations, we find no pronounced slowing down of the dephasing with increasing magnetic field. On the contrary, one obtains a decreasing dephasing time because of the increase of the Coulomb matrix elements and the number of states in a given Landau subband. In the situation when the loss of scattering channels exceeds these increasing effects, one gets a slight increase at the dephasing time. However, details of the strongly modulated scattering kinetics depend sensitively on the detuning, the plasma density, and the spectral pulse width relative to the cyclotron frequency.Comment: 13 pages, in RevTex format, 10 figures, Phys. Rev B in pres

    Chern-Simons matrix model: coherent states and relation to Laughlin wavefunctions

    Full text link
    Using a coherent state representation we derive many-body probability distributions and wavefunctions for the Chern-Simons matrix model proposed by Polychronakos and compare them to the Laughlin ones. We analyze two different coherent state representations, corresponding to different choices for electron coordinate bases. In both cases we find that the resulting probability distributions do not quite agree with the Laughlin ones. There is agreement on the long distance behavior, but the short distance behavior is different.Comment: 15 pages, LaTeX; one reference added, abstract and section 5 expanded, typos correcte
    corecore