366 research outputs found

    Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents.

    Full text link

    Bibliometrics of systematic reviews : analysis of citation rates and journal impact factors

    Get PDF
    Background: Systematic reviews are important for informing clinical practice and health policy. The aim of this study was to examine the bibliometrics of systematic reviews and to determine the amount of variance in citations predicted by the journal impact factor (JIF) alone and combined with several other characteristics. Methods: We conducted a bibliometric analysis of 1,261 systematic reviews published in 2008 and the citations to them in the Scopus database from 2008 to June 2012. Potential predictors of the citation impact of the reviews were examined using descriptive, univariate and multiple regression analysis. Results: The mean number of citations per review over four years was 26.5 (SD +/-29.9) or 6.6 citations per review per year. The mean JIF of the journals in which the reviews were published was 4.3 (SD +/-4.2). We found that 17% of the reviews accounted for 50% of the total citations and 1.6% of the reviews were not cited. The number of authors was correlated with the number of citations (r = 0.215, P =5.16) received citations in the bottom quartile (eight or fewer), whereas 9% of reviews published in the lowest JIF quartile (<=2.06) received citations in the top quartile (34 or more). Six percent of reviews in journals with no JIF were also in the first quartile of citations. Conclusions: The JIF predicted over half of the variation in citations to the systematic reviews. However, the distribution of citations was markedly skewed. Some reviews in journals with low JIFs were well-cited and others in higher JIF journals received relatively few citations; hence the JIF did not accurately represent the number of citations to individual systematic reviews

    Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem

    Get PDF
    Prescribed burning is a common management tool to control fuel loads, ground vegetation, and facilitate desirable game species. We evaluated soil fungal community responses to long-term prescribed fire treatments in a loblolly pine forest on the Piedmont of Georgia and utilized deep Internal Transcribed Spacer Region 1 (ITS1) amplicon sequencing afforded by the recent Ion Torrent Personal Genome Machine (PGM). These deep sequence data (19,000+ reads per sample after subsampling) indicate that frequent fires (3 year fire interval) shift soil fungus communities whereas infrequent fires (6 year fire interval) permit system resetting to a state similar to that without prescribed fire. Furthermore, in nonmetric multidimensional scaling analyses, primarily ectomycorrhizal taxa were correlated with axes associated with long fire intervals whereas soil saprobes tended to be correlated with the frequent fire recurrence. We conclude that 1) multiplexed Ion Torrent PGM analyses allow deep cost effective sequencing of fungal communities, but may suffer from short read lengths and inconsistent sequence quality adjacent to the sequencing adaptor; 2) frequent prescribed fires elicit a shift in soil fungal communities; and, 3) such shifts do not occur when fire intervals are longer. Our results emphasize the general responsiveness of these forests to management, and the importance of fire return intervals in meeting management objectives

    Invasion of exotic earthworms into ecosystems inhabited by native earthworms

    Get PDF
    The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in soil profiles, nutrient and organic matter dynamics, other soil organisms or plant communities. Most of these cases are in areas that have been disturbed (e.g., agricultural systems) or were previously devoid of earthworms (e.g., north of Pleistocene glacial margins). It is not clear that such effects are common in ecosystems inhabited by native earthworms, especially where soils are undisturbed. We explore the idea that indigenous earthworm fauna and/or characteristics of their native habitats may resist invasion by exotic earthworms and thereby reduce the impact of exotic species on soil processes. We review data and case studies from temperate and tropical regions to test this idea. Specifically, we address the following questions: Is disturbance a prerequisite to invasion by exotic earthworms? What are the mechanisms by which exotic earthworms may succeed or fail to invade habitats occupied by native earthworms? Potential mechanisms could include (1) intensity of propagule pressure (how frequently and at what densities have exotic species been introduced and has there been adequate time for proliferation?); (2) degree of habitat matching (once introduced, are exotic species faced with unsuitable habitat conditions, unavailable resources, or unsuited feeding strategies?); and (3) degree of biotic resistance (after introduction into an otherwise suitable habitat, are exotic species exposed to biological barriers such as predation or parasitism, ‘‘unfamiliar’’ microflora, or competition by resident native species?). Once established, do exotic species coexist with native species, or are the natives eventually excluded? Do exotic species impact soil processes differently in the presence or absence of native species? We conclude that (1) exotic earthworms do invade ecosystems inhabited by indigenous earthworms, even in the absence of obvious disturbance; (2) competitive exclusion of native earthworms by exotic earthworms is not easily demonstrated and, in fact, co-existence of native and exotic species appears to be common, even if transient; and (3) resistance to exotic earthworm invasions, if it occurs, may be more a function of physical and chemical characteristics of a habitat than of biological interactions between native and exotic earthworms
    • 

    corecore