102 research outputs found

    The role of PKC/ERK1/2 signaling in the anti-inflammatory effect of tetracyclic triterpene euphol on TPA-induced skin inflammation in mice

    Get PDF
    AbstractInflammation underlies the development and progression of a number of skin disorders including psoriasis, atopic dermatitis and cancer. Therefore, novel antiinflammatory agents are of great clinical interest for prevention and treatment of these conditions. Herein, we demonstrated the underlying molecular mechanisms of the antiinflammatory activity of euphol, a tetracyclic triterpene isolated from the sap of Euphorbia tirucalli, in skin inflammation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in mice. Topical application of euphol (100μg/ear) significantly inhibited TPA-induced ear edema and leukocyte influx through the reduction of keratinocyte-derived chemokine (CXCL1/KC) and macrophage inflammatory protein (MIP)-2 levels. At the intracellular level, euphol reduced TPA-induced extracellular signal-regulated protein kinase (ERK) activation and cyclooxygenase-2 (COX-2) upregulation. These effects were associated with euphol's ability to prevent TPA-induced protein kinase C (PKC) activation, namely PKCα and PKCδ isozymes. Our data indicate that topical application of euphol markedly inhibits the inflammatory response induced by TPA. Thus, euphol represents a promising agent for the management of skin diseases with an inflammatory component

    Antinociceptive Activity of Trichilia catigua Hydroalcoholic Extract: New Evidence on Its Dopaminergic Effects

    Get PDF
    Trichilia catigua is a native plant of Brazil; its barks are used by some local pharmaceutical companies to prepare tonic drinks, such as Catuama. The present study was addressed to evaluate the effects of T. catigua hydroalcoholic extract in mouse nociception behavioral models, and to evaluate the possible mechanisms involved in its actions. Male Swiss mice were submitted to hot-plate, writhing and von Frey tests, after oral treatment with T. catigua extract (200 mg kg−1, p.o.). The extract displayed antinociceptive effect in all three models. For characterization of the mechanisms involved in the antinociceptive action of the extract, the following pharmacological treatments were done: naloxone (2.5 mg kg−1, s.c.), SR141716A (10 mg kg−1, i.p.), SCH23390 (15 μg kg−1, i.p.), sulpiride (50 mg kg−1, i.p.), prazosin (1 mg kg−1, i.p.), bicuculline (1 mg kg−1, i.p.) or dl-p-chlorophenylalanine methyl ester (PCPA, 100 mg kg−1, i.p.). In these experiments, the action of T. catigua extract was evaluated in the hot-plate test. The treatment with SCH23390 completely prevented the antinociceptive effect, while naloxone partially prevented it. The possible involvement of the dopaminergic system in the actions of T. catigua extract was substantiated by data showing the potentiation of apomorphine-induced hypothermia and by the prevention of haloperidol-induced catalepsy. In conclusion, the antinociceptive effects of T. catigua extract seem to be mainly associated with the activation of dopaminergic system and, to a lesser extent, through interaction with opioid pathway

    Kinin B1 receptors mediate depression-like behavior response in stressed mice treated with systemic E. coli lipopolysaccharide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kinin B<sub>1 </sub>receptors are inducible molecules up-regulated after inflammatory stimuli. This study evaluated the relevance of kinin B<sub>1 </sub>receptors in a mouse depression behavior model.</p> <p>Methods</p> <p>Mice were exposed to a 5-min swimming session, and 30 min later they were injected with <it>E. coli </it>lipopolysaccharide (LPS). Depression-like behavior was assessed by determining immobility time in a tail suspension test. Different brain structures were collected for molecular and immunohistochemical studies. Anhedonia was assessed by means of a sucrose intake test.</p> <p>Results</p> <p>Our protocol elicited an increase in depression-like behavior in CF1 mice, as assessed by the tail-suspension test, at 24 h. This behavior was significantly reduced by treatment with the selective B<sub>1 </sub>receptor antagonists R-715 and SSR240612. Administration of SSR240612 also prevented an increase in number of activated microglial cells in mouse hippocampus, but did not affect a reduction in expression of mRNA for brain-derived neurotrophic factor. The increased immobility time following LPS treatment was preceded by an enhancement of hippocampal and cortical B<sub>1 </sub>receptor mRNA expression (which were maximal at 1 h), and a marked production of TNFα in serum, brain and cerebrospinal fluid (between 1 and 6 h). The depression-like behavior was virtually abolished in TNF<it>α </it>p55 receptor-knockout mice, and increased B<sub>1 </sub>receptor mRNA expression was completely absent in this mouse strain. Furthermore, treatment with SSR240612 was also effective in preventing anhedonia in LPS-treated mice, as assessed using a sucrose preference test.</p> <p>Conclusion</p> <p>Our data show, for the first time, involvement of kinin B<sub>1 </sub>receptors in depressive behavioral responses, in a process likely associated with microglial activation and TNFα production. Thus, selective and orally active B<sub>1 </sub>receptor antagonists might well represent promising pharmacological tools for depression therapy.</p

    Preventive and Therapeutic Euphol Treatment Attenuates Experimental Colitis in Mice

    Get PDF
    BACKGROUND: The tetracyclic triterpene euphol is the main constituent found in the sap of Euphorbia tirucalli. This plant is widely known in Brazilian traditional medicine for its use in the treatment of several kinds of cancer, including leukaemia, prostate and breast cancers. Here, we investigated the effect of euphol on experimental models of colitis and the underlying mechanisms involved in its action. METHODOLOGY/PRINCIPAL FINDINGS: Colitis was induced in mice either with dextran sulfate sodium (DSS) or with 2,4,6-trinitrobenzene sulfonic acid (TNBS), and the effect of euphol (3, 10 and 30 mg/kg) on colonic injury was assessed. Pro-inflammatory mediators and cytokines were measured by immunohistochemistry, enzyme-Linked immunoabsorbent assay (ELISA), real time-polymerase chain reaction (RT-PCR) and flow cytometry. Preventive and therapeutic oral administration of euphol attenuated both DSS- and TNBS-induced acute colitis as observed by a significant reduction of the disease activity index (DAI), histological/microscopic damage score and myeloperoxidase (MPO) activity in colonic tissue. Likewise, euphol treatment also inhibited colon tissue levels and expression of IL-1β, CXCL1/KC, MCP-1, MIP-2, TNF-α and IL-6, while reducing NOS2, VEGF and Ki67 expression in colonic tissue. This action seems to be likely associated with inhibition of activation of nuclear factor-κB (NF-κB). In addition, euphol decreased LPS-induced MCP-1, TNF-α, IL-6 and IFN-γ, but increased IL-10 secretion from bone marrow-derived macrophages in vitro. Of note, euphol, at the same schedule of treatment, markedly inhibited both selectin (P- and E-selectin) and integrin (ICAM-1, VCAM-1 and LFA-1) expression in colonic tissue. CONCLUSIONS/SIGNIFICANCE: Together, these results clearly demonstrated that orally-administered euphol, both preventive or therapeutic treatment were effective in reducing the severity of colitis in two models of chemically-induced mouse colitis and suggest this plant-derived compound might be a potential molecule in the management of inflammatory bowel diseases

    Antinociceptive Activity of Trichilia catigua Hydroalcoholic Extract: New Evidence on Its Dopaminergic Effects

    Get PDF
    Trichilia catigua is a native plant of Brazil; its barks are used by some local pharmaceutical companies to prepare tonic drinks, such as Catuama. The present study was addressed to evaluate the effects of T. catigua hydroalcoholic extract in mouse nociception behavioral models, and to evaluate the possible mechanisms involved in its actions. Male Swiss mice were submitted to hot-plate, writhing and von Frey tests, after oral treatment with T. catigua extract (200 mg kg −1 , p.o.). The extract displayed antinociceptive effect in all three models. For characterization of the mechanisms involved in the antinociceptive action of the extract, the following pharmacological treatments were done: naloxone (2.5 mg kg −1 , s.c.), SR141716A (10 mg kg −1 , i.p.), SCH23390 (15 μg kg −1 , i.p.), sulpiride (50 mg kg −1 , i.p.), prazosin (1 mg kg −1 , i.p.), bicuculline (1 mg kg −1 , i.p.) or dl-p-chlorophenylalanine methyl ester (PCPA, 100 mg kg −1 , i.p.). In these experiments, the action of T. catigua extract was evaluated in the hot-plate test. The treatment with SCH23390 completely prevented the antinociceptive effect, while naloxone partially prevented it. The possible involvement of the dopaminergic system in the actions of T. catigua extract was substantiated by data showing the potentiation of apomorphineinduced hypothermia and by the prevention of haloperidol-induced catalepsy. In conclusion, the antinociceptive effects of T. catigua extract seem to be mainly associated with the activation of dopaminergic system and, to a lesser extent, through interaction with opioid pathway

    Cannabinoid Agonists Inhibit Neuropathic Pain Induced by Brachial Plexus Avulsion in Mice by Affecting Glial Cells and MAP Kinases

    Get PDF
    Many studies have shown the antinociceptive effects of cannabinoid (CB) agonists in different models of pain. Herein, we have investigated their relevance in neuropathic pain induced by brachial plexus avulsion (BPA) in mice.Mice underwent BPA or sham surgery. The mRNA levels and protein expression of CB(1) and CB(2) receptors were assessed by RT-PCR and immunohistochemistry, respectively. The activation of glial cells, MAP kinases and transcription factors were evaluated by immunohistochemistry. The antinociceptive properties induced by cannabinoid agonists were assessed on the 5(th) and 30(th) days after surgery. We observed a marked increase in CB(1) and CB(2) receptor mRNA and protein expression in the spinal cord and dorsal root ganglion, either at the 5(th) or 30(th) day after surgery. BPA also induced a marked activation of p38 and JNK MAP kinases (on the 30(th) day), glial cells, such as microglia and astrocytes, and the transcription factors CREB and NF-κB (at the 5(th) and 30(th) days) in the spinal cord. Systemic treatment with cannabinoid agonists reduced mechanical allodynia on both the 5(th) and 30(th) days after surgery, but the greatest results were observed by using central routes of administration, especially at the 30(th) day. Treatment with WIN 55,212-2 prevented the activation of both glial cells and MAP kinases, associated with an enhancement of CREB and NF-κB activation.Our results indicate a relevant role for cannabinoid agonists in BPA, reinforcing their potential therapeutic relevance for the management of chronic pain states

    Caffeine Consumption Prevents Diabetes-Induced Memory Impairment and Synaptotoxicity in the Hippocampus of NONcZNO10/LTJ Mice

    Get PDF
    Diabetic conditions are associated with modified brain function, namely with cognitive deficits, through largely undetermined processes. More than understanding the underlying mechanism, it is important to devise novel strategies to alleviate diabetes-induced cognitive deficits. Caffeine (a mixed antagonist of adenosine A1 and A2A receptors) emerges as a promising candidate since caffeine consumption reduces the risk of diabetes and effectively prevents memory deficits caused by different noxious stimuli. Thus, we took advantage of a novel animal model of type 2 diabetes to investigate the behavioural, neurochemical and morphological modifications present in the hippocampus and tested if caffeine consumption might prevent these changes. We used a model closely mimicking the human type 2 diabetes condition, NONcNZO10/LtJ mice, which become diabetic at 7–11 months when kept under an 11% fat diet. Caffeine (1 g/l) was applied in the drinking water from 7 months onwards. Diabetic mice displayed a decreased spontaneous alternation in the Y-maze accompanied by a decreased density of nerve terminal markers (synaptophysin, SNAP25), mainly glutamatergic (vesicular glutamate transporters), and increased astrogliosis (GFAP immunoreactivity) compared to their wild type littermates kept under the same diet. Furthermore, diabetic mice displayed up-regulated A2A receptors and down-regulated A1 receptors in the hippocampus. Caffeine consumption restored memory performance and abrogated the diabetes-induced loss of nerve terminals and astrogliosis. These results provide the first evidence that type 2 diabetic mice display a loss of nerve terminal markers and astrogliosis, which is associated with memory impairment; furthermore, caffeine consumption prevents synaptic dysfunction and astrogliosis as well as memory impairment in type 2 diabetes
    corecore