329 research outputs found
Vertex-algebraic structure of the principal subspaces of certain A_1^(1)-modules, II: higher level case
We give an a priori proof of the known presentations of (that is,
completeness of families of relations for) the principal subspaces of all the
standard A_1^(1)-modules. These presentations had been used by Capparelli,
Lepowsky and Milas for the purpose of obtaining the classical Rogers-Selberg
recursions for the graded dimensions of the principal subspaces. This paper
generalizes our previous paper.Comment: 26 pages; v2: minor revisions, to appear in Journal of Pure and
Applied Algebr
Streaming Algorithms for Submodular Function Maximization
We consider the problem of maximizing a nonnegative submodular set function
subject to a -matchoid
constraint in the single-pass streaming setting. Previous work in this context
has considered streaming algorithms for modular functions and monotone
submodular functions. The main result is for submodular functions that are {\em
non-monotone}. We describe deterministic and randomized algorithms that obtain
a -approximation using -space, where is
an upper bound on the cardinality of the desired set. The model assumes value
oracle access to and membership oracles for the matroids defining the
-matchoid constraint.Comment: 29 pages, 7 figures, extended abstract to appear in ICALP 201
Budget Feasible Mechanisms for Experimental Design
In the classical experimental design setting, an experimenter E has access to
a population of potential experiment subjects , each
associated with a vector of features . Conducting an experiment
with subject reveals an unknown value to E. E typically assumes
some hypothetical relationship between 's and 's, e.g., , and estimates from experiments, e.g., through linear
regression. As a proxy for various practical constraints, E may select only a
subset of subjects on which to conduct the experiment.
We initiate the study of budgeted mechanisms for experimental design. In this
setting, E has a budget . Each subject declares an associated cost to be part of the experiment, and must be paid at least her cost. In
particular, the Experimental Design Problem (EDP) is to find a set of
subjects for the experiment that maximizes V(S) = \log\det(I_d+\sum_{i\in
S}x_i\T{x_i}) under the constraint ; our objective
function corresponds to the information gain in parameter that is
learned through linear regression methods, and is related to the so-called
-optimality criterion. Further, the subjects are strategic and may lie about
their costs.
We present a deterministic, polynomial time, budget feasible mechanism
scheme, that is approximately truthful and yields a constant factor
approximation to EDP. In particular, for any small and , we can construct a (12.98, )-approximate mechanism that is
-truthful and runs in polynomial time in both and
. We also establish that no truthful,
budget-feasible algorithms is possible within a factor 2 approximation, and
show how to generalize our approach to a wide class of learning problems,
beyond linear regression
Truthful Multi-unit Procurements with Budgets
We study procurement games where each seller supplies multiple units of his
item, with a cost per unit known only to him. The buyer can purchase any number
of units from each seller, values different combinations of the items
differently, and has a budget for his total payment.
For a special class of procurement games, the {\em bounded knapsack} problem,
we show that no universally truthful budget-feasible mechanism can approximate
the optimal value of the buyer within , where is the total number of
units of all items available. We then construct a polynomial-time mechanism
that gives a -approximation for procurement games with {\em concave
additive valuations}, which include bounded knapsack as a special case. Our
mechanism is thus optimal up to a constant factor. Moreover, for the bounded
knapsack problem, given the well-known FPTAS, our results imply there is a
provable gap between the optimization domain and the mechanism design domain.
Finally, for procurement games with {\em sub-additive valuations}, we
construct a universally truthful budget-feasible mechanism that gives an
-approximation in polynomial time with a
demand oracle.Comment: To appear at WINE 201
Vertex-algebraic structure of the principal subspaces of certain A_1^(1)-modules, I: level one case
This is the first in a series of papers in which we study vertex-algebraic
structure of Feigin-Stoyanovsky's principal subspaces associated to standard
modules for both untwisted and twisted affine Lie algebras. A key idea is to
prove suitable presentations of principal subspaces, without using bases or
even ``small'' spanning sets of these spaces. In this paper we prove
presentations of the principal subspaces of the basic A_1^(1)-modules. These
convenient presentations were previously used in work of
Capparelli-Lepowsky-Milas for the purpose of obtaining the classical
Rogers-Ramanujan recursion for the graded dimensions of the principal
subspaces.Comment: 20 pages. To appear in International J. of Mat
Submodular Maximization Meets Streaming: Matchings, Matroids, and More
We study the problem of finding a maximum matching in a graph given by an
input stream listing its edges in some arbitrary order, where the quantity to
be maximized is given by a monotone submodular function on subsets of edges.
This problem, which we call maximum submodular-function matching (MSM), is a
natural generalization of maximum weight matching (MWM), which is in turn a
generalization of maximum cardinality matching (MCM). We give two incomparable
algorithms for this problem with space usage falling in the semi-streaming
range---they store only edges, using working memory---that
achieve approximation ratios of in a single pass and in
passes respectively. The operations of these algorithms
mimic those of Zelke's and McGregor's respective algorithms for MWM; the
novelty lies in the analysis for the MSM setting. In fact we identify a general
framework for MWM algorithms that allows this kind of adaptation to the broader
setting of MSM.
In the sequel, we give generalizations of these results where the
maximization is over "independent sets" in a very general sense. This
generalization captures hypermatchings in hypergraphs as well as independence
in the intersection of multiple matroids.Comment: 18 page
An iterative decision-making scheme for Markov decision processes and its application to self-adaptive systems
Software is often governed by and thus adapts to phenomena that occur at runtime. Unlike traditional decision problems, where a decision-making model is determined for reasoning, the adaptation logic of such software is concerned with empirical data and is subject to practical constraints. We present an Iterative Decision-Making Scheme (IDMS) that infers both point and interval estimates for the undetermined transition probabilities in a Markov Decision Process (MDP) based on sampled data, and iteratively computes a confidently optimal scheduler from a given finite subset of schedulers. The most important feature of IDMS is the flexibility for adjusting the criterion of confident optimality and the sample size within the iteration, leading to a tradeoff between accuracy, data usage and computational overhead. We apply IDMS to an existing self-adaptation framework Rainbow and conduct a case study using a Rainbow system to demonstrate the flexibility of IDMS
Multiple mechanisms of growth hormone-regulated gene transcription
Diverse physiological actions of growth hormone (GH) are mediated by changes in gene transcription. Transcription can be regulated at several levels, including post-translational modification of transcription factors, and formation of multiprotein complexes involving transcription factors, co-regulators and additional nuclear proteins; these serve as targets for regulation by hormones and signaling pathways. Evidence that GH regulates transcription at multiple levels is exemplified by analysis of the proto-oncogene c-fos. Among the GH-regulated transcription factors on c-fos, C/EBPbeta appears to be key, since depletion of C/EBPbeta by RNA interference blocks the stimulation of c-fos by GH. The phosphorylation state of C/EBPbeta and its ability to activate transcription are regulated by GH through MAPK and PI3K/Akt-mediated signaling cascades. The acetylation of C/EBPbeta also contributes to its ability to activate c-fos transcription. These and other post-translational modifications of C/EBPbeta appear to be integrated for regulation of transcription by GH. The formation of nuclear proteins into complexes associated with DNA-bound transcription factors is also regulated by GH. Both C/EBPbeta and the co-activator p300 are recruited to c-fos in response to GH, altering c-fos promoter activation. In addition, GH rapidly induces spatio-temporal re-localization of C/EBPbeta within the nucleus. Thus, GH-regulated gene transcription mediated by C/EBPbeta reflects the integration of diverse mechanisms including post-translational modifications, modulation of protein complexes associated with DNA and re-localization of gene regulatory proteins. Similar integration involving other transcription factors, including Stats, appears to be a feature of regulation by GH of other gene targets.Fil: Ceseña, Teresa I.. University of Michigan; Estados UnidosFil: Cui, Tracy Xiao. University of Michigan; Estados UnidosFil: Piwien Pilipuk, Graciela. Fundación Instituto Leloir; ArgentinaFil: Kaplani, Julianne. University of Michigan; Estados UnidosFil: Calinescu, Anda Alexandra. Michigan State University; Estados UnidosFil: Huo, Jeffrey S.. University of Michigan; Estados UnidosFil: Iñiguez Lluhí, Jorge A.. University of Michigan; Estados UnidosFil: Kwok, Roland. University of Michigan; Estados UnidosFil: Schwartz, Jessica. University of Michigan; Estados Unido
On k-Column Sparse Packing Programs
We consider the class of packing integer programs (PIPs) that are column
sparse, i.e. there is a specified upper bound k on the number of constraints
that each variable appears in. We give an (ek+o(k))-approximation algorithm for
k-column sparse PIPs, improving on recent results of and
. We also show that the integrality gap of our linear programming
relaxation is at least 2k-1; it is known that k-column sparse PIPs are
-hard to approximate. We also extend our result (at the loss
of a small constant factor) to the more general case of maximizing a submodular
objective over k-column sparse packing constraints.Comment: 19 pages, v3: additional detail
Thresholded Covering Algorithms for Robust and Max-Min Optimization
The general problem of robust optimization is this: one of several possible
scenarios will appear tomorrow, but things are more expensive tomorrow than
they are today. What should you anticipatorily buy today, so that the
worst-case cost (summed over both days) is minimized? Feige et al. and
Khandekar et al. considered the k-robust model where the possible outcomes
tomorrow are given by all demand-subsets of size k, and gave algorithms for the
set cover problem, and the Steiner tree and facility location problems in this
model, respectively.
In this paper, we give the following simple and intuitive template for
k-robust problems: "having built some anticipatory solution, if there exists a
single demand whose augmentation cost is larger than some threshold, augment
the anticipatory solution to cover this demand as well, and repeat". In this
paper we show that this template gives us improved approximation algorithms for
k-robust Steiner tree and set cover, and the first approximation algorithms for
k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios
(except for multicut) are almost best possible.
As a by-product of our techniques, we also get algorithms for max-min
problems of the form: "given a covering problem instance, which k of the
elements are costliest to cover?".Comment: 24 page
- …