329 research outputs found

    Vertex-algebraic structure of the principal subspaces of certain A_1^(1)-modules, II: higher level case

    Get PDF
    We give an a priori proof of the known presentations of (that is, completeness of families of relations for) the principal subspaces of all the standard A_1^(1)-modules. These presentations had been used by Capparelli, Lepowsky and Milas for the purpose of obtaining the classical Rogers-Selberg recursions for the graded dimensions of the principal subspaces. This paper generalizes our previous paper.Comment: 26 pages; v2: minor revisions, to appear in Journal of Pure and Applied Algebr

    Streaming Algorithms for Submodular Function Maximization

    Full text link
    We consider the problem of maximizing a nonnegative submodular set function f:2NR+f:2^{\mathcal{N}} \rightarrow \mathbb{R}^+ subject to a pp-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and monotone submodular functions. The main result is for submodular functions that are {\em non-monotone}. We describe deterministic and randomized algorithms that obtain a Ω(1p)\Omega(\frac{1}{p})-approximation using O(klogk)O(k \log k)-space, where kk is an upper bound on the cardinality of the desired set. The model assumes value oracle access to ff and membership oracles for the matroids defining the pp-matchoid constraint.Comment: 29 pages, 7 figures, extended abstract to appear in ICALP 201

    Budget Feasible Mechanisms for Experimental Design

    Full text link
    In the classical experimental design setting, an experimenter E has access to a population of nn potential experiment subjects i{1,...,n}i\in \{1,...,n\}, each associated with a vector of features xiRdx_i\in R^d. Conducting an experiment with subject ii reveals an unknown value yiRy_i\in R to E. E typically assumes some hypothetical relationship between xix_i's and yiy_i's, e.g., yiβxiy_i \approx \beta x_i, and estimates β\beta from experiments, e.g., through linear regression. As a proxy for various practical constraints, E may select only a subset of subjects on which to conduct the experiment. We initiate the study of budgeted mechanisms for experimental design. In this setting, E has a budget BB. Each subject ii declares an associated cost ci>0c_i >0 to be part of the experiment, and must be paid at least her cost. In particular, the Experimental Design Problem (EDP) is to find a set SS of subjects for the experiment that maximizes V(S) = \log\det(I_d+\sum_{i\in S}x_i\T{x_i}) under the constraint iSciB\sum_{i\in S}c_i\leq B; our objective function corresponds to the information gain in parameter β\beta that is learned through linear regression methods, and is related to the so-called DD-optimality criterion. Further, the subjects are strategic and may lie about their costs. We present a deterministic, polynomial time, budget feasible mechanism scheme, that is approximately truthful and yields a constant factor approximation to EDP. In particular, for any small δ>0\delta > 0 and ϵ>0\epsilon > 0, we can construct a (12.98, ϵ\epsilon)-approximate mechanism that is δ\delta-truthful and runs in polynomial time in both nn and loglogBϵδ\log\log\frac{B}{\epsilon\delta}. We also establish that no truthful, budget-feasible algorithms is possible within a factor 2 approximation, and show how to generalize our approach to a wide class of learning problems, beyond linear regression

    Truthful Multi-unit Procurements with Budgets

    Full text link
    We study procurement games where each seller supplies multiple units of his item, with a cost per unit known only to him. The buyer can purchase any number of units from each seller, values different combinations of the items differently, and has a budget for his total payment. For a special class of procurement games, the {\em bounded knapsack} problem, we show that no universally truthful budget-feasible mechanism can approximate the optimal value of the buyer within lnn\ln n, where nn is the total number of units of all items available. We then construct a polynomial-time mechanism that gives a 4(1+lnn)4(1+\ln n)-approximation for procurement games with {\em concave additive valuations}, which include bounded knapsack as a special case. Our mechanism is thus optimal up to a constant factor. Moreover, for the bounded knapsack problem, given the well-known FPTAS, our results imply there is a provable gap between the optimization domain and the mechanism design domain. Finally, for procurement games with {\em sub-additive valuations}, we construct a universally truthful budget-feasible mechanism that gives an O(log2nloglogn)O(\frac{\log^2 n}{\log \log n})-approximation in polynomial time with a demand oracle.Comment: To appear at WINE 201

    Vertex-algebraic structure of the principal subspaces of certain A_1^(1)-modules, I: level one case

    Full text link
    This is the first in a series of papers in which we study vertex-algebraic structure of Feigin-Stoyanovsky's principal subspaces associated to standard modules for both untwisted and twisted affine Lie algebras. A key idea is to prove suitable presentations of principal subspaces, without using bases or even ``small'' spanning sets of these spaces. In this paper we prove presentations of the principal subspaces of the basic A_1^(1)-modules. These convenient presentations were previously used in work of Capparelli-Lepowsky-Milas for the purpose of obtaining the classical Rogers-Ramanujan recursion for the graded dimensions of the principal subspaces.Comment: 20 pages. To appear in International J. of Mat

    Submodular Maximization Meets Streaming: Matchings, Matroids, and More

    Full text link
    We study the problem of finding a maximum matching in a graph given by an input stream listing its edges in some arbitrary order, where the quantity to be maximized is given by a monotone submodular function on subsets of edges. This problem, which we call maximum submodular-function matching (MSM), is a natural generalization of maximum weight matching (MWM), which is in turn a generalization of maximum cardinality matching (MCM). We give two incomparable algorithms for this problem with space usage falling in the semi-streaming range---they store only O(n)O(n) edges, using O(nlogn)O(n\log n) working memory---that achieve approximation ratios of 7.757.75 in a single pass and (3+ϵ)(3+\epsilon) in O(ϵ3)O(\epsilon^{-3}) passes respectively. The operations of these algorithms mimic those of Zelke's and McGregor's respective algorithms for MWM; the novelty lies in the analysis for the MSM setting. In fact we identify a general framework for MWM algorithms that allows this kind of adaptation to the broader setting of MSM. In the sequel, we give generalizations of these results where the maximization is over "independent sets" in a very general sense. This generalization captures hypermatchings in hypergraphs as well as independence in the intersection of multiple matroids.Comment: 18 page

    An iterative decision-making scheme for Markov decision processes and its application to self-adaptive systems

    Get PDF
    Software is often governed by and thus adapts to phenomena that occur at runtime. Unlike traditional decision problems, where a decision-making model is determined for reasoning, the adaptation logic of such software is concerned with empirical data and is subject to practical constraints. We present an Iterative Decision-Making Scheme (IDMS) that infers both point and interval estimates for the undetermined transition probabilities in a Markov Decision Process (MDP) based on sampled data, and iteratively computes a confidently optimal scheduler from a given finite subset of schedulers. The most important feature of IDMS is the flexibility for adjusting the criterion of confident optimality and the sample size within the iteration, leading to a tradeoff between accuracy, data usage and computational overhead. We apply IDMS to an existing self-adaptation framework Rainbow and conduct a case study using a Rainbow system to demonstrate the flexibility of IDMS

    Multiple mechanisms of growth hormone-regulated gene transcription

    Get PDF
    Diverse physiological actions of growth hormone (GH) are mediated by changes in gene transcription. Transcription can be regulated at several levels, including post-translational modification of transcription factors, and formation of multiprotein complexes involving transcription factors, co-regulators and additional nuclear proteins; these serve as targets for regulation by hormones and signaling pathways. Evidence that GH regulates transcription at multiple levels is exemplified by analysis of the proto-oncogene c-fos. Among the GH-regulated transcription factors on c-fos, C/EBPbeta appears to be key, since depletion of C/EBPbeta by RNA interference blocks the stimulation of c-fos by GH. The phosphorylation state of C/EBPbeta and its ability to activate transcription are regulated by GH through MAPK and PI3K/Akt-mediated signaling cascades. The acetylation of C/EBPbeta also contributes to its ability to activate c-fos transcription. These and other post-translational modifications of C/EBPbeta appear to be integrated for regulation of transcription by GH. The formation of nuclear proteins into complexes associated with DNA-bound transcription factors is also regulated by GH. Both C/EBPbeta and the co-activator p300 are recruited to c-fos in response to GH, altering c-fos promoter activation. In addition, GH rapidly induces spatio-temporal re-localization of C/EBPbeta within the nucleus. Thus, GH-regulated gene transcription mediated by C/EBPbeta reflects the integration of diverse mechanisms including post-translational modifications, modulation of protein complexes associated with DNA and re-localization of gene regulatory proteins. Similar integration involving other transcription factors, including Stats, appears to be a feature of regulation by GH of other gene targets.Fil: Ceseña, Teresa I.. University of Michigan; Estados UnidosFil: Cui, Tracy Xiao. University of Michigan; Estados UnidosFil: Piwien Pilipuk, Graciela. Fundación Instituto Leloir; ArgentinaFil: Kaplani, Julianne. University of Michigan; Estados UnidosFil: Calinescu, Anda Alexandra. Michigan State University; Estados UnidosFil: Huo, Jeffrey S.. University of Michigan; Estados UnidosFil: Iñiguez Lluhí, Jorge A.. University of Michigan; Estados UnidosFil: Kwok, Roland. University of Michigan; Estados UnidosFil: Schwartz, Jessica. University of Michigan; Estados Unido

    On k-Column Sparse Packing Programs

    Full text link
    We consider the class of packing integer programs (PIPs) that are column sparse, i.e. there is a specified upper bound k on the number of constraints that each variable appears in. We give an (ek+o(k))-approximation algorithm for k-column sparse PIPs, improving on recent results of k22kk^2\cdot 2^k and O(k2)O(k^2). We also show that the integrality gap of our linear programming relaxation is at least 2k-1; it is known that k-column sparse PIPs are Ω(k/logk)\Omega(k/ \log k)-hard to approximate. We also extend our result (at the loss of a small constant factor) to the more general case of maximizing a submodular objective over k-column sparse packing constraints.Comment: 19 pages, v3: additional detail

    Thresholded Covering Algorithms for Robust and Max-Min Optimization

    Full text link
    The general problem of robust optimization is this: one of several possible scenarios will appear tomorrow, but things are more expensive tomorrow than they are today. What should you anticipatorily buy today, so that the worst-case cost (summed over both days) is minimized? Feige et al. and Khandekar et al. considered the k-robust model where the possible outcomes tomorrow are given by all demand-subsets of size k, and gave algorithms for the set cover problem, and the Steiner tree and facility location problems in this model, respectively. In this paper, we give the following simple and intuitive template for k-robust problems: "having built some anticipatory solution, if there exists a single demand whose augmentation cost is larger than some threshold, augment the anticipatory solution to cover this demand as well, and repeat". In this paper we show that this template gives us improved approximation algorithms for k-robust Steiner tree and set cover, and the first approximation algorithms for k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios (except for multicut) are almost best possible. As a by-product of our techniques, we also get algorithms for max-min problems of the form: "given a covering problem instance, which k of the elements are costliest to cover?".Comment: 24 page
    corecore