1,639 research outputs found

    Nonlinear Kinetic Dynamics of Magnetized Weibel Instability

    Full text link
    Kinetic numerical simulations of the evolution of the Weibel instability during the full nonlinear regime are presented. The formation of strong distortions in the electron distribution function resulting in formation of strong peaks in it and their influence on the resulting electrostatic waves are shown.Comment: 6 pages, 4 figure

    Theory and applications of the Vlasov equation

    Full text link
    Forty articles have been recently published in EPJD as contributions to the topical issue "Theory and applications of the Vlasov equation". The aim of this topical issue was to provide a forum for the presentation of a broad variety of scientific results involving the Vlasov equation. In this editorial, after some introductory notes, a brief account is given of the main points addressed in these papers and of the perspectives they open.Comment: Editoria

    Kinetic cascade in solar-wind turbulence: 3D3V hybrid-kinetic simulations with electron inertia

    Full text link
    Understanding the nature of the turbulent fluctuations below the ion gyroradius in solar-wind turbulence is a great challenge. Recent studies have been mostly in favor of kinetic Alfv\'en wave (KAW) type of fluctuations, but other kinds of fluctuations with characteristics typical of magnetosonic, whistler and ion Bernstein modes, could also play a role depending on the plasma parameters. Here we investigate the properties of the sub-proton-scale cascade with high-resolution hybrid-kinetic simulations of freely-decaying turbulence in 3D3V phase space, including electron inertia effects. Two proton plasma beta are explored: the "intermediate" βp=1\beta_p=1 and "low" βp=0.2\beta_p=0.2 regimes, both typically observed in solar wind and corona. The magnetic energy spectum exhibits k8/3k_\perp^{-8/3} and k7/2k_\|^{-7/2} power laws at βp=1\beta_p=1, while they are slightly steeper at βp=0.2\beta_p=0.2. Nevertheless, both regimes develop a spectral anisotropy consistent with kk2/3k_\|\sim k_\perp^{2/3} at kρp>1k_\perp\rho_p>1, and pronounced small-scale intermittency. In this context, we find that the kinetic-scale cascade is dominated by KAW-like fluctuations at βp=1\beta_p=1, whereas the low-β\beta case presents a more complex scenario suggesting the simultaneous presence of different types of fluctuations. In both regimes, however, a non-negligible role of ion Bernstein type of fluctuations at the smallest scales seems to emerge.Comment: 6 pages, 5 figures, final version published in The Astrophysical Journal Letters: Cerri, Servidio & Califano, ApJL 846, L18 (2017

    Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations

    Full text link
    A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfv\'en wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at β1\beta\gtrsim1 and by magnetosonic/whistler fluctuations at lower β\beta. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and variability of subproton-scale turbulence in the SW, including its possible dependence on the plasma β\beta, and call for detailed and extensive parametric explorations of driven kinetic turbulence in three dimensions.Comment: 6 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter

    Pressure anisotropy generation in a magnetized plasma configuration with a shear flow velocity

    Full text link
    The nonlinear evolution of the Kelvin Helmholtz instability in a magnetized plasma with a perpendicular flow close to, or in, the supermagnetosonic regime can produce a significant parallel-to-perpendicular pressure anisotropy. This anisotropy, localized inside the flow shear region, can make the configuration unstable either to the mirror or to the firehose instability and, in general, can affect the development of the KHI. The interface between the solar wind and the Earth's magnetospheric plasma at the magnetospheric equatorial flanks provides a relevant setting for the development of this complex nonlinear dynamics.Comment: 11 pages, 7 figures, submitted to Plasma Phys. Control. Fusio

    Viscoplastic simple shear at finite strains

    Get PDF
    The equations governing the simple shear deformation of an incompressible inelastic material undergoing finite strain are derived in this paper. The constitutive assumptions are kept in their most general form to allow the incorporation of widely used viscoplastic or viscoelastic models from the literature. It is shown that, while for a hyperelastic material the simple shear problem is completely determined by a single parameter, the amount of shear, in the viscoplastic case, the elastic deformation is the superposition of a triaxial stretch and a simple shear, whose determination requires the solution of three coupled nonlinear evolution equations. We evaluate such a solution for different material models and compare it with three-dimensional finite element simulations to assess its accuracy. We further assess the performance of these models using experimental data from filled rubber, focusing on their ability to capture the observed behaviour, such as the well-known Payne effect. Additionally, we extend our simple shear solution to address torsion and the extension of thin-walled cylinders. These derivations and analyses offer valuable insights for experimentalists engaged in the mechanical characterization of soft materials

    Plasma turbulence at ion scales: a comparison between PIC and Eulerian hybrid-kinetic approaches

    Full text link
    Kinetic-range turbulence in magnetized plasmas and, in particular, in the context of solar-wind turbulence has been extensively investigated over the past decades via numerical simulations. Among others, one of the widely adopted reduced plasma model is the so-called hybrid-kinetic model, where the ions are fully kinetic and the electrons are treated as a neutralizing (inertial or massless) fluid. Within the same model, different numerical methods and/or approaches to turbulence development have been employed. In the present work, we present a comparison between two-dimensional hybrid-kinetic simulations of plasma turbulence obtained with two complementary approaches spanning about two decades in wavenumber - from MHD inertial range to scales well below the ion gyroradius - with a state-of-the-art accuracy. One approach employs hybrid particle-in-cell (HPIC) simulations of freely-decaying Alfv\'enic turbulence, whereas the other consists of Eulerian hybrid Vlasov-Maxwell (HVM) simulations of turbulence continuously driven with partially-compressible large-scale fluctuations. Despite the completely different initialization and injection/drive at large scales, the same properties of turbulent fluctuations at kρi1k_\perp\rho_i\gtrsim1 are observed. The system indeed self-consistently "reprocesses" the turbulent fluctuations while they are cascading towards smaller and smaller scales, in a way which actually depends on the plasma beta parameter. Small-scale turbulence has been found to be mainly populated by kinetic Alfv\'en wave (KAW) fluctuations for β1\beta\geq1, whereas KAW fluctuations are only sub-dominant for low-β\beta.Comment: 18 pages, 4 figures, accepted for publication in J. Plasma Phys. (Collection: "The Vlasov equation: from space to laboratory plasma physics"
    corecore