1,639 research outputs found
Nonlinear Kinetic Dynamics of Magnetized Weibel Instability
Kinetic numerical simulations of the evolution of the Weibel instability
during the full nonlinear regime are presented. The formation of strong
distortions in the electron distribution function resulting in formation of
strong peaks in it and their influence on the resulting electrostatic waves are
shown.Comment: 6 pages, 4 figure
Theory and applications of the Vlasov equation
Forty articles have been recently published in EPJD as contributions to the
topical issue "Theory and applications of the Vlasov equation". The aim of this
topical issue was to provide a forum for the presentation of a broad variety of
scientific results involving the Vlasov equation. In this editorial, after some
introductory notes, a brief account is given of the main points addressed in
these papers and of the perspectives they open.Comment: Editoria
Kinetic cascade in solar-wind turbulence: 3D3V hybrid-kinetic simulations with electron inertia
Understanding the nature of the turbulent fluctuations below the ion
gyroradius in solar-wind turbulence is a great challenge. Recent studies have
been mostly in favor of kinetic Alfv\'en wave (KAW) type of fluctuations, but
other kinds of fluctuations with characteristics typical of magnetosonic,
whistler and ion Bernstein modes, could also play a role depending on the
plasma parameters. Here we investigate the properties of the sub-proton-scale
cascade with high-resolution hybrid-kinetic simulations of freely-decaying
turbulence in 3D3V phase space, including electron inertia effects. Two proton
plasma beta are explored: the "intermediate" and "low"
regimes, both typically observed in solar wind and corona. The
magnetic energy spectum exhibits and power laws
at , while they are slightly steeper at . Nevertheless,
both regimes develop a spectral anisotropy consistent with at , and pronounced small-scale intermittency.
In this context, we find that the kinetic-scale cascade is dominated by
KAW-like fluctuations at , whereas the low- case presents a
more complex scenario suggesting the simultaneous presence of different types
of fluctuations. In both regimes, however, a non-negligible role of ion
Bernstein type of fluctuations at the smallest scales seems to emerge.Comment: 6 pages, 5 figures, final version published in The Astrophysical
Journal Letters: Cerri, Servidio & Califano, ApJL 846, L18 (2017
Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations
A long-lasting debate in space plasma physics concerns the nature of
subproton-scale fluctuations in solar wind (SW) turbulence. Over the past
decade, a series of theoretical and observational studies were presented in
favor of either kinetic Alfv\'en wave (KAW) or whistler turbulence. Here, we
investigate numerically the nature of the subproton-scale turbulent cascade for
typical SW parameters by means of unprecedented high-resolution simulations of
forced hybrid-kinetic turbulence in two real-space and three velocity-space
dimensions. Our analysis suggests that small-scale turbulence in this model is
dominated by KAWs at and by magnetosonic/whistler fluctuations
at lower . The spectral properties of the turbulence appear to be in
good agreement with theoretical predictions. A tentative interpretation of this
result in terms of relative changes in the damping rates of the different waves
is also presented. Overall, the results raise interesting new questions about
the properties and variability of subproton-scale turbulence in the SW,
including its possible dependence on the plasma , and call for detailed
and extensive parametric explorations of driven kinetic turbulence in three
dimensions.Comment: 6 pages, 4 figures, accepted for publication in The Astrophysical
Journal Letter
Pressure anisotropy generation in a magnetized plasma configuration with a shear flow velocity
The nonlinear evolution of the Kelvin Helmholtz instability in a magnetized
plasma with a perpendicular flow close to, or in, the supermagnetosonic regime
can produce a significant parallel-to-perpendicular pressure anisotropy. This
anisotropy, localized inside the flow shear region, can make the configuration
unstable either to the mirror or to the firehose instability and, in general,
can affect the development of the KHI. The interface between the solar wind and
the Earth's magnetospheric plasma at the magnetospheric equatorial flanks
provides a relevant setting for the development of this complex nonlinear
dynamics.Comment: 11 pages, 7 figures, submitted to Plasma Phys. Control. Fusio
Viscoplastic simple shear at finite strains
The equations governing the simple shear deformation of an incompressible inelastic material undergoing finite strain are derived in this paper. The constitutive assumptions are kept in their most general form to allow the incorporation of widely used viscoplastic or viscoelastic models from the literature. It is shown that, while for a hyperelastic material the simple shear problem is completely determined by a single parameter, the amount of shear, in the viscoplastic case, the elastic deformation is the superposition of a triaxial stretch and a simple shear, whose determination requires the solution of three coupled nonlinear evolution equations. We evaluate such a solution for different material models and compare it with three-dimensional finite element simulations to assess its accuracy. We further assess the performance of these models using experimental data from filled rubber, focusing on their ability to capture the observed behaviour, such as the well-known Payne effect. Additionally, we extend our simple shear solution to address torsion and the extension of thin-walled cylinders. These derivations and analyses offer valuable insights for experimentalists engaged in the mechanical characterization of soft materials
Plasma turbulence at ion scales: a comparison between PIC and Eulerian hybrid-kinetic approaches
Kinetic-range turbulence in magnetized plasmas and, in particular, in the
context of solar-wind turbulence has been extensively investigated over the
past decades via numerical simulations. Among others, one of the widely adopted
reduced plasma model is the so-called hybrid-kinetic model, where the ions are
fully kinetic and the electrons are treated as a neutralizing (inertial or
massless) fluid. Within the same model, different numerical methods and/or
approaches to turbulence development have been employed. In the present work,
we present a comparison between two-dimensional hybrid-kinetic simulations of
plasma turbulence obtained with two complementary approaches spanning about two
decades in wavenumber - from MHD inertial range to scales well below the ion
gyroradius - with a state-of-the-art accuracy. One approach employs hybrid
particle-in-cell (HPIC) simulations of freely-decaying Alfv\'enic turbulence,
whereas the other consists of Eulerian hybrid Vlasov-Maxwell (HVM) simulations
of turbulence continuously driven with partially-compressible large-scale
fluctuations. Despite the completely different initialization and
injection/drive at large scales, the same properties of turbulent fluctuations
at are observed. The system indeed self-consistently
"reprocesses" the turbulent fluctuations while they are cascading towards
smaller and smaller scales, in a way which actually depends on the plasma beta
parameter. Small-scale turbulence has been found to be mainly populated by
kinetic Alfv\'en wave (KAW) fluctuations for , whereas KAW
fluctuations are only sub-dominant for low-.Comment: 18 pages, 4 figures, accepted for publication in J. Plasma Phys.
(Collection: "The Vlasov equation: from space to laboratory plasma physics"
- …