3 research outputs found
Proton-and Neutron-Induced Single-Event Upsets in FPGAs for the PANDA Experiment
Single-event upsets (SEUs) affecting the configuration memory of a 28-nm field-programmable gate array (FPGA) have been studied through experiments and Monte Carlo modeling. This FPGA will be used in the front-end electronics of the electromagnetic calorimeter in PANDA (Antiproton Annihilation at Darmstadt), an upcoming hadron-physics experiment. Results from proton and neutron irradiations of the FPGA are presented and shown to be in agreement with previous experimental results. To estimate the mean time between SEUs during operation of PANDA, a Geant4-based Monte Carlo model of the phenomenon has been used. This model describes the energy deposition by particles in a silicon volume, the subsequent drift and diffusion of charges in the FPGA memory cell, and the eventual collection of charges in the sensitive regions of the cell. The values of the two free parameters of the model, the sensitive volume side d = 87 nm and the critical charge Qcrit = 0.23 fC, were determined by fitting the model to the experimental data. The results of the model agree well with both the proton and neutron data and are also shown to correctly predict the cross sections for upsets induced by other particles. The model-predicted energy dependence of the cross section for neutron-induced upsets has been used to estimate the rate of SEUs during initial operation of PANDA. At a luminosity of 1&cdot; 1031 cm-2s-1, the predicted mean time between upsets (MTBU) is between 120 and 170 h per FPGA, depending on the beam momentum.</p
Isospin decomposition of the basic double-pionic fusion in the region of the ABC effect
Exclusive and kinematically complete high-statistics measurements of the basic double pionic fusion reactions pn -> dpi0pi0, pn -> d pi+pi- and pp -> dpi+pi0 have been carried out simultaneously over the energy region of the ABC effect using the WASA detector setup at COSY. Whereas the isoscalar reaction part given by the dpi0pi0 channel exhibits the ABC effect, i.e. a low-mass enhancement in the pipi-invariant mass distribution, as well as the associated resonance structure in the total cross section, the isovector part given by the dpi+pi0 channel shows a smooth behavior consistent with the conventional t-channel Delta Delta process. The dpi+pi- data are very well reproduced by combining the data for isovector and isoscalar contributions, if the kinematical consequences of the isospin violation due to different masses for charged and neutral pions are taken into account
Hyperon signatures in the PANDA experiment at FAIR
We present a detailed simulation study of the signatures from the sequential decays of the triple-strange pbar p -> Ω+Ω- -> K+ΛbarK- Λ -> K+pbarπ+K-pπ- process in the PANDA central tracking system with focus on hit patterns and precise time measurement. We present a systematic approach for studying physics channels at the detector level and develop input criteria for tracking algorithms and trigger lines. Finally, we study the beam momentum dependence on the reconstruction efficiency for the PANDA detector