8 research outputs found

    RAF1 kinase activity is dispensable for KRAS/p53 mutant lung tumor progression.

    Get PDF
    We thank Dr. Shiva Malek and her colleagues (Genentech Inc.) for sharing their results with us before publication. We also thank M. San Roman, R. Villar, M.C. Gonzalez, A. Lopez, N. Cabrera, P. Villanueva, J. Condo, O. Dominguez, and S. Ortega for excellent technical support. This work was supported by grants from the European Research Council (ERC-2015-AdG/695566, THERACAN); the Spanish Ministry of Science, Innovation, and Universities (RTC-2017-6576-1 and RTI2018094664-B-I00) and the Autonomous Community of Madrid (B2017/BMD-3884 iLUNG-CM) to M.B., as well as by a grant from the Spanish Ministry of Science, Innovation and Universities (RTI2018-094664-B-I00) to M.B. and M.M. M.B. is a recipient of an Endowed Chair from the AXA Research Fund. M.S., P.N., and F.F.-G. were supported by FPU fellowships from the Spanish Ministry of Education. L.E.-B. was a recipient of an FPI fellowship from the Spanish Ministry of Economy and Competitiveness. S.G.-A. is a recipient of a postdoctoral fellowship from the Asociacion Espanola Contra el Cancer (AECC).S

    KRAS4A induces metastatic lung adenocarcinomas in vivo in the absence of the KRAS4B isoform.

    Get PDF
    In mammals, the KRAS locus encodes two protein isoforms, KRAS4A and KRAS4B, which differ only in their C terminus via alternative splicing of distinct fourth exons. Previous studies have shown that whereas KRAS expression is essential for mouse development, the KRAS4A isoform is expendable. Here, we have generated a mouse strain that carries a terminator codon in exon 4B that leads to the expression of an unstable KRAS4B154 truncated polypeptide, hence resulting in a bona fide Kras4B-null allele. In contrast, this terminator codon leaves expression of the KRAS4A isoform unaffected. Mice selectively lacking KRAS4B expression developed to term but died perinatally because of hypertrabeculation of the ventricular wall, a defect reminiscent of that observed in embryos lacking the Kras locus. Mouse embryonic fibroblasts (MEFs) obtained from Kras4B-/- embryos proliferated less than did wild-type MEFs, because of limited expression of KRAS4A, a defect that can be compensated for by ectopic expression of this isoform. Introduction of the same terminator codon into a Kras FSFG12V allele allowed expression of an endogenous KRAS4AG12V oncogenic isoform in the absence of KRAS4B. Exposure of Kras +/FSF4AG12V4B- mice to Adeno-FLPo particles induced lung tumors with complete penetrance, albeit with increased latencies as compared with control Kras +/FSFG12V animals. Moreover, a significant percentage of these mice developed proximal metastasis, a feature seldom observed in mice expressing both mutant isoforms. These results illustrate that expression of the KRAS4AG12V mutant isoform is sufficient to induce lung tumors, thus suggesting that selective targeting of the KRAS4BG12V oncoprotein may not have significant therapeutic consequences.We thank Marta San Roman, Raquel Villar, and Nuria Cabrera for excellent technical assistance; Mayte Lamparero and Isabel Blanco (Animal Facility) for mouse work; the Histopathology Unit for processing of mouse tissues; Lola Martinez (Flow Cytometry Unit) for her help with flow cytometry analyses; Diego Megias and Manuel Perez (Confocal Microscopy Unit) for assistance with confocal microscopy; and the Mouse Genome Editing Unit for support with the generation of the mouse strains described here. We also thank Ignacio Perez de Castro (Instituto de Salud Carlos III, Madrid, Spain) for sharing the EGFP-KRAS4B plasmid and Orlando Dominguez (Genomics Unit) and Pedro P. Lopez-Casas (Clinical Research Program) for their advice on exome sequencing. This work was supported by grants from the European Research Council (ERC-2015-AdG/695566, THERACAN), the Spanish Ministry of Science, Innovation and Universities (RTC-2017-6576-1), and the Autonomous Community of Madrid (B2017/BMD-3884 iLUNG-CM); a grant from the CRIS Cancer Foundation (to M.B.); and a grant from the Spanish Ministry of Science, Innovation and Universities (RTI2018-094664-B-I00, to M.B. and M.M.). M.B. is a recipient of an Endowed Chair from the AXA Research Fund. M.S. was supported by predoctoral contract "Severo Ochoa" (BES-2016-079096) from the SpanishMinistry of Science, Innovation and Universities. G.P. was a recipient of a "Young Ph.D." grant from the Government of the Community of Madrid. F.F.-G. was supported by a formacion de profesorado universitario (FPU) fellowship from the Spanish Ministry of Science, Innovation and Universities.S

    Tumor regression and resistance mechanisms upon CDK4 and RAF1 inactivation in KRAS/P53 mutant lung adenocarcinomas.

    Get PDF
    KRAS mutant lung adenocarcinomas remain intractable for targeted therapies. Genetic interrogation of KRAS downstream effectors, including the MAPK pathway and the interphase CDKs, identified CDK4 and RAF1 as the only targets whose genetic inactivation induces therapeutic responses without causing unacceptable toxicities. Concomitant CDK4 inactivation and RAF1 ablation prevented tumor progression and induced complete regression in 25% of KRAS/p53-driven advanced lung tumors, yet a significant percentage of those tumors that underwent partial regression retained a population of CDK4/RAF1-resistant cells. Characterization of these cells revealed two independent resistance mechanisms implicating hypermethylation of several tumor suppressors and increased PI3K activity. Importantly, these CDK4/RAF1-resistant cells can be pharmacologically controlled. These studies open the door to new therapeutic strategies to treat KRAS mutant lung cancer, including resistant tumors.We thank S. Ortega for the generation of the Cdk4FxKD mouse model; and M. San Roman, R. Villar, M. C. Gonzalez, A. Lopez, N. Cabrera, P. Villanueva, J. Condo, J. Klett, A. Cebria, A. Otero, O. Dominguez, G. Luengo, G. Garaulet, F. Mulero, and D. Megias for excellent technical support. This work was supported by European Research Council Grant ERC-2015-AdG/695566, THERACAN, Spanish Ministry of Science, Innovation, and Universities Grant RTC-2017-6576-1, and the Autonomous Community of Madrid Grant B2017/BMD-3884 iLUNG-CM (to M.B.); Spanish Ministry of Science, Innovation, and Universities Grant RTI2018-094664B-I00 (to M.B. and M.M.); and National Natural Science Foundation of China Grant 31771469 (to H.W.). M.B. is a recipient of an Endowed Chair from the AXA Research Fund. L.E.-B. is the recipient of an FPI fellowship from the Spanish Ministry of Economy and Competitiveness. F.F.-G., M.S., and P.N. were supported by an FPU fellowships from the Spanish Ministry of Education.S

    A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity

    Get PDF
    The costimulation of immune cells using first-generation anti-4-1BB monoclonal antibodies (mAbs) has demonstrated anti-tumor activity in human trials. Further clinical development, however, is restricted by significant off-tumor toxicities associated with Fc gamma R interactions. Here, we have designed an Fc-free tumor-targeted 4-1BB-agonistic trimerbody, 1D8(N)/(C)EGa1, consisting of three anti-4-1BB single-chain variable fragments and three anti-EGFR single-domain antibodies positioned in an extended hexagonal conformation around the collagen XVIII homotrimerization domain. The1D8(N)/(C)EGa1 trimerbody demonstrated high-avidity binding to 4-1BB and EGFR and a potent in vitro costimulatory capacity in the presence of EGFR. The trimerbody rapidly accumulates in EGFR-positive tumors and exhibits anti-tumor activity similar to IgG-based 4-1BB-agonistic mAbs. Importantly, treatment with 1D8(N)/(C)EGa1 does not induce systemic inflammatory cytokine production or hepatotoxicity associated with IgG-based 4-1BB agonists. These results implicate Fc gamma R interactions in the 4-1BB-agonist-associated immune abnormalities, and promote the use of the non-canonical antibody presented in this work for safe and effective costimulatory strategies in cancer immunotherapy

    Co-occurrence of mutations in NF1 and other susceptibility genes in pheochromocytoma and paraganglioma

    No full text
    IntroductionThe percentage of patients diagnosed with pheochromocytoma and paraganglioma (altogether PPGL) carrying known germline mutations in one of the over fifteen susceptibility genes identified to date has dramatically increased during the last two decades, accounting for up to 35-40% of PPGL patients. Moreover, the application of NGS to the diagnosis of PPGL detects unexpected co-occurrences of pathogenic allelic variants in different susceptibility genes. MethodsHerein we uncover several cases with dual mutations in NF1 and other PPGL genes by targeted sequencing. We studied the molecular characteristics of the tumours with co-occurrent mutations, using omic tools to gain insight into the role of these events in tumour development. ResultsAmongst 23 patients carrying germline NF1 mutations, targeted sequencing revealed additional pathogenic germline variants in DLST (n=1) and MDH2 (n=2), and two somatic mutations in H3-3A and PRKAR1A. Three additional patients, with somatic mutations in NF1 were found carrying germline pathogenic mutations in SDHB or DLST, and a somatic truncating mutation in ATRX. Two of the cases with dual germline mutations showed multiple pheochromocytomas or extra-adrenal paragangliomas - an extremely rare clinical finding in NF1 patients. Transcriptional and methylation profiling and metabolite assessment showed an intermediate signature to suggest that both variants had a pathological role in tumour development. DiscussionIn conclusion, mutations affecting genes involved in different pathways (pseudohypoxic and receptor tyrosine kinase signalling) co-occurring in the same patient could provide a selective advantage for the development of PPGL, and explain the variable expressivity and incomplete penetrance observed in some patients

    A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity

    No full text
    The costimulation of immune cells using first-generation anti-4-1BB monoclonal antibodies (mAbs) has demonstrated anti-tumor activity in human trials. Further clinical development, however, is restricted by significant off-tumor toxicities associated with Fc gamma R interactions. Here, we have designed an Fc-free tumor-targeted 4-1BB-agonistic trimerbody, 1D8(N)/(C)EGa1, consisting of three anti-4-1BB single-chain variable fragments and three anti-EGFR single-domain antibodies positioned in an extended hexagonal conformation around the collagen XVIII homotrimerization domain. The1D8(N)/(C)EGa1 trimerbody demonstrated high-avidity binding to 4-1BB and EGFR and a potent in vitro costimulatory capacity in the presence of EGFR. The trimerbody rapidly accumulates in EGFR-positive tumors and exhibits anti-tumor activity similar to IgG-based 4-1BB-agonistic mAbs. Importantly, treatment with 1D8(N)/(C)EGa1 does not induce systemic inflammatory cytokine production or hepatotoxicity associated with IgG-based 4-1BB agonists. These results implicate Fc gamma R interactions in the 4-1BB-agonist-associated immune abnormalities, and promote the use of the non-canonical antibody presented in this work for safe and effective costimulatory strategies in cancer immunotherapy

    Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism

    No full text
    Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understand- ing of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9–RAGE–NF-ÎșB–JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary mela- noma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity
    corecore