538 research outputs found

    SOME TESTS TO ESTABLISH CONFIDENCE IN PLANETS DISCOVERED BY TRANSIT PHOTOMETRY

    Get PDF
    Increased attention is being paid to transit photometry as a viable method for discovering or confirming detections of extrasolar planets. Several ground-based efforts are underway that target short-period, giant planets such as 51 Peg b, and several missions have been proposed to NASA and ESA to detect planets as small as Earth from spaceborne photometers. The success of these efforts depends in part on the ability to establish appropriate detection thresholds to control false alarm rates and the ability to assess the statistical confidence in planetary candidates drawn from any such search. This latter function attains higher importance for the space-based efforts, where direct ground-based confirmation of terrestrial-size planets is not possible. These tasks are complicated by the need to survey tens of thousands of stars to overcome the limited geometric probability of transit alignment and by the nature of the transit signals themselves. In this paper, we present empirical methods for setting appropriate detection thresholds and for establishing the confidence level in planetary candidates obtained from transit photometry of even a large number of stars. The methods are simple and allow the observer to quickly assess the statistical significance of any particular set of transits

    Trade and the Environment: Equilibrium or Imbalance?

    Get PDF
    Review of Greening the GATT: Trade, Environment, and the Future by Daniel C. Esty; Freer Trade, Protected Environment: Balancing Trade Liberalization and Environmental Interests by C.Ford Runge, François Ortalo-Magné, and Philip Vande Kamp; Trade and the Environment: The Search for Balance (James Cameron, Paul Demaret & Damien Geradin, eds.); and Trading Up: Consumer and Environmental Regulation in a Global Economy by David Voge

    A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270

    Get PDF
    One of the primary goals of exoplanetary science is to detect small, temperate planets passing (transiting) in front of bright and quiet host stars. This enables the characterization of planetary sizes, orbits, bulk compositions, atmospheres and formation histories. These studies are facilitated by small and cool M dwarf host stars. Here we report the Transiting Exoplanet Survey Satellite (TESS) discovery of three small planets transiting one of the nearest and brightest M dwarf hosts observed to date, TOI-270 (TIC 259377017, with K-magnitude 8.3, and 22.5 parsecs away from Earth). The M3V-type star is transited by the super-Earth-sized planet TOI-270 b (1.247^(+0.089)_(−0.083) R⊕) and the sub-Neptune-sized planets TOI-270 c (2.42 ± 0.13 R⊕) and TOI-270 d (2.13 ± 0.12 R⊕). The planets orbit close to a mean-motion resonant chain, with periods (3.36 days, 5.66 days and 11.38 days, respectively) near ratios of small integers (5:3 and 2:1). TOI-270 is a prime target for future studies because (1) its near-resonance allows the detection of transit timing variations, enabling precise mass measurements and dynamical studies; (2) its brightness enables independent radial-velocity mass measurements; (3) the outer planets are ideal for atmospheric characterization via transmission spectroscopy; and (4) the quietness of the star enables future searches for habitable zone planets. Altogether, very few systems with small, temperate exoplanets are as suitable for such complementary and detailed characterization as TOI-270

    Formation of Black Holes from Collapsed Cosmic String Loops

    Get PDF
    The fraction of cosmic string loops which collapse to form black holes is estimated using a set of realistic loops generated by loop fragmentation. The smallest radius sphere into which each cosmic string loop may fit is obtained by monitoring the loop through one period of oscillation. For a loop with invariant length LL which contracts to within a sphere of radius RR, the minimum mass-per-unit length μmin\mu_{\rm min} necessary for the cosmic string loop to form a black hole according to the hoop conjecture is μmin=R/(2GL)\mu_{\rm min} = R /(2 G L). Analyzing 25,57625,576 loops, we obtain the empirical estimate fBH=104.9±0.2(Gμ)4.1±0.1f_{\rm BH} = 10^{4.9\pm 0.2} (G\mu)^{4.1 \pm 0.1} for the fraction of cosmic string loops which collapse to form black holes as a function of the mass-per-unit length μ\mu in the range 10−3≲Gμ≲3×10−210^{-3} \lesssim G\mu \lesssim 3 \times 10^{-2}. We use this power law to extrapolate to Gμ∼10−6G\mu \sim 10^{-6}, obtaining the fraction fBHf_{\rm BH} of physically interesting cosmic string loops which collapse to form black holes within one oscillation period of formation. Comparing this fraction with the observational bounds on a population of evaporating black holes, we obtain the limit Gμ≤3.1(±0.7)×10−6G\mu \le 3.1 (\pm 0.7) \times 10^{-6} on the cosmic string mass-per-unit-length. This limit is consistent with all other observational bounds.Comment: uuencoded, compressed postscript; 20 pages including 7 figure

    Back to the Future: Surveying the Northern Hemisphere and Reprocessing the Southern TESS Data Set

    Get PDF
    TESS launched 18 April 2018 to conduct a two-year, near all-sky survey for at least 50 small, nearby exoplanets for which masses can be ascertained and whose atmospheres can be characterized by ground- and space-based follow-on observations. TESS has completed its survey of the southern hemisphere and begun its survey of the northern hemisphere, identifying >1000 candidate exoplanets and unveiling a plethora of exciting non-exoplanet astrophysics results, such as asteroseismology, asteroids, and supernova. The TESS Science Processing Operations Center (SPOC) processes the data downlinked every two weeks to generate a range of data products hosted at the Mikulski Archive for Space Telescopes (MAST). For each sector (~1 month) of observations, the SPOC calibrates the image data for both 30-min Full Frame Images (FFIs) and up to 20,000 pre-selected 2-min target star postage stamps. Data products for the 2-min targets include simple aperture photometry and systematic error-corrected flux time series. The SPOC also conducts searches for transiting exoplanets in the 2-min data for each sector and generates Data Validation time series and associated reports for each transit-like feature identified in the search. Multi-sector searches for exoplanets are conducted periodically to discover longer period planets, including those in the James Webb Continuous Viewing Zone (CVZ), which are observed for up to one year. Starting with Sector 8, scattered light from the Earth and Moon contaminated significant portions of the data in each orbit. We have developed algorithms for automated identification of the scattered light features at the individual target level. Previously, data for all stars on a CCD affected by scattered light were manually excluded. The automated flagging will allow us to retain significantly more data for stars that are not affected by the scattered light even though it is occurring elsewhere on the CCD. We also discuss enhancements to the SPOC pipeline and the newly available FFI light curves. The TESS Mission is funded by NASA's Science Mission Directorate as an Astrophysics Explorer Mission

    Validating Phasing and Geometry of Large Focal Plane Arrays

    Get PDF
    The Kepler Mission is designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-sized and smaller planets in or near the habitable zone. The Kepler photometer is an array of 42 CCDs (charge-coupled devices) in the focal plane of a 95-cm Schmidt camera onboard the Kepler spacecraft. Each 50x25-mm CCD has 2,200 x 1,024 pixels. The CCDs accumulate photons and are read out every six seconds to prevent saturation. The data is integrated for 30 minutes, and then the pixel data is transferred to onboard storage. The data is subsequently encoded and transmitted to the ground. During End-to-End Information System (EEIS) testing of the Kepler Mission System (KMS), there was a need to verify that the pixels requested by the science team operationally were correctly collected, encoded, compressed, stored, and transmitted by the FS, and subsequently received, decoded, uncompressed, and displayed by the Ground Segment (GS) without the outputs of any CCD modules being flipped, mirrored, or otherwise corrupted during the extensive FS and GS processing. This would normally be done by projecting an image on the focal plane array (FPA), collecting the data in a flight-like way, and making a comparison between the original data and the data reconstructed by the science data system. Projecting a focused image onto the FPA through the telescope would normally involve using a collimator suspended over the telescope opening. There were several problems with this approach: the collimation equipment is elaborate and expensive; as conceived, it could only illuminate a limited section of the FPA (.25 percent) during a given test; the telescope cover would have to be deployed during testing to allow the image to be projected into the telescope; the equipment was bulky and difficult to situate in temperature-controlled environments; and given all the above, test setup, execution, and repeatability were significant concerns. Instead of using this complicated approach of projecting an optical image on the FPA, the Kepler project developed a method using known defect features in the CCDs to verify proper collection and reassembly of the pixels, thereby avoiding the costs and risks of the optical projection approach. The CCDs composing the Kepler FPA, as all CCDs, had minor defects. At ambient temperature, some pixels look far brighter than they should. These ghot h pixels have a higher rate of charge leakage than the others due to manufacturing variations. They are usually stable over time, and appear at temperatures above 5 oC. The hot pixels on the Kepler FPA were mapped before photometer assembly during module testing. Selected hot pixels were used as target gstars h for the purposes of EEIS testing. gDead h pixels are permanently off, producing a permanently black pixel. These can also be used if there is some illumination of the FPA. During EEIS testing, Dark Current Full Frame Images (FFIs) taken at room temperature were used to create the hot pixel maps for all 84 Kepler photometer CCD channels. Data from two separate nights were used to create two hot pixel maps per channel, which were cross-correlated to remove cosmic ray events which appear to be hot pixels. These hot pixel maps obtained during EEIS testing were compared to the maps made during module testing to verify that the end-to-end data flow was correct

    Kepler Archive Manual

    Get PDF
    A description of Kepler, its design, performance and operational constraints may be found in the Kepler Instrument Handbook (KIH, Van Cleve Caldwell 2016). A description of Kepler calibration and data processing is described in the Kepler Data Processing Handbook (KDPH, Jenkins et al. 2016; Fanelli et al. 2011). Science users should also consult the special ApJ Letters devoted to early Kepler results and mission design (April 2010, ApJL, Vol. 713 L79-L207). Additional technical details regarding the data processing and data qualities can be found in the Kepler Data Characteristics Handbook (KDCH, Christiansen et al. 2013) and the Data Release Notes (DRN). This archive manual specifically documents the file formats, as they exist for the last data release of Kepler, Data Release 25(KSCI-19065-002). The earlier versions of the archive manual and data release notes act as documentation for the earlier versions of the data files

    The Kepler Pixel Response Function

    Full text link
    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal to noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for publication
    • …
    corecore