21 research outputs found

    <i>Medicago truncatula</i> functional genomics: an invaluable resource for studies on agriculture sustainability

    Get PDF
    Legume functional genomics has moved many steps forward in the last two decades thanks to the improvement of genomics technologies and to the efforts of the research community. Tools for functional genomics studies are now available in Lotus japonicus, Medicago truncatula and soybean. In this chapter we focus on M.truncatula, as a model species for forage legumes, on the main achievements obtained due to the reported resources and on the future perspectives for the study of gene function in this species

    Medicago truncatula Functional Genomics - An Invaluable Resource for Studies on Agriculture Sustainability

    Get PDF
    © 2012 Panara et al., licensee InTech. This is an open access chapter distributed under the terms of th

    An Italian functional genomic resource for Medicago truncatula

    Get PDF
    Background: Medicago truncatula is a model species for legumes. Its functional genomics have been considerably boosted in recent years due to initiatives based both in Europe and US. Collections of mutants are becoming increasingly available and this will help unravel the genetic control of important traits for many species of legumes. Findings: Our report is on the production of three complementary mutant collections of the model species Medicago truncatula produced in Italy in the frame of a national genomic initiative. Well established strategies were used: Tnt1 mutagenesis, TILLING and activation tagging. Both forward and reverse genetics screenings proved the efficiency of the mutagenesis approaches adopted, enabling the isolation of interesting mutants which are in course of characterization. We anticipate that the reported collections will be complementary to the recently established functional genomics tools developed for Medicago truncatula both in Europe and in the United States

    Genome-Wide Identification of Histone Modification Gene Families in the Model Legume <i>Medicago truncatula</i> and Their Expression Analysis in Nodules

    No full text
    Histone methylation and acetylation are key processes in the epigenetic regulation of plant growth, development, and responses to environmental stimuli. The genes encoding for the enzymes that are responsible for these chromatin post-translational modifications, referred to as histone modification genes (HMGs), have been poorly investigated in Leguminosae species, despite their importance for establishment and activity of nitrogen-fixing nodules. In silico analysis of Medicago truncatula HMGs identified 81 histone methyltransferases, 46 histone demethylases, 64 histone acetyltransferases, and 15 histone deacetylases. MtHMGs were analyzed for their structure and domain composition, and some combinations that were not yet reported in other plant species were identified. Genes have been retrieved from M. truncatula A17 and R108 genotypes as well as M. sativa CADL and Zhongmu No.1; the gene number and distribution were compared with Arabidopsis thaliana. Furthermore, by analyzing the expression data that were obtained at various developmental stages and in different zones of nitrogen-fixing nodules, we identified MtHMG loci that could be involved in nodule development and function. This work sets a reference for HMG genomic organization in legumes which will be useful for functional investigation that is aimed at elucidating HMGs involvement in nodule development and symbiotic nitrogen fixation

    Functional Characterization of MtrGSTF7, a Glutathione S-Transferase Essential for Anthocyanin Accumulation in Medicago truncatula

    No full text
    Flavonoids are essential compounds widespread in plants and exert many functions such as defence, definition of organ colour and protection against stresses. In Medicago truncatula, flavonoid biosynthesis and accumulation is finely regulated in terms of tissue specificity and induction by external factors, such as cold and other stresses. Among flavonoids, anthocyanin precursors are synthesised in the cytoplasm, transported to the tonoplast, then imported into the vacuole for further modifications and storage. In the present work, we functionally characterised MtrGSTF7, a phi-class glutathione S-transferase involved in anthocyanin transport to the tonoplast. The mtrgstf7 mutant completely lost the ability to accumulate anthocyanins in leaves both under control and anthocyanin inductive conditions. On the contrary, this mutant showed an increase in the levels of soluble proanthocyanidins (Pas) in their seeds with respect to the wild type. By complementation and expression data analysis, we showed that, differently from A. thaliana and similarly to V. vinifera, transport of anthocyanin and proanthocyanidins is likely carried out by different GSTs belonging to the phi-class. Such functional diversification likely results from the plant need to finely tune the accumulation of diverse classes of flavonoids according to the target organs and developmental stages

    An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex

    Get PDF
    Apomixis in plants consists of asexual reproduction by seeds. Here we characterized at structural and functional levels an apomixis-linked sequence of Paspalum simplex homologous to subunit 3 of the ORIGIN RECOGNITION COMPLEX (ORC3). ORC is a multiprotein complex which controls DNA replication and cell differentiation in eukaryotes. Three PsORC3 copies were identified, each one characterized by a specific expression profile. Of these, PsORC3a, specific for apomictic genotypes, is a pseudogene that was poorly and constitutively expressed in all developmental stages of apomictic flowers, whereas PsORC3b, the putative functional gene in sexual flowers, showed a precise time-related regulation. Sense transcripts of PsORC3 were expressed in the female cell lineage of both apomictic and sexual reproductive phenotypes, and in aposporous initials. Although strong expression was detected in sexual early endosperm, no expression was present in the apomictic endosperm. Antisense PsORC3 transcripts were revealed exclusively in apomictic germ cell lineages. Defective orc3 mutants of rice and Arabidopsis showed normal female gametophytes although the embryo and endosperm were arrested at early phases of development. We hypothesize that PsORC3a is associated with the down-regulation of its functional homolog and with the development of apomictic endosperm which deviates from the canonical 2(maternal):1(paternal) genome ratio.Fil: Siena, Lorena Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Ortiz, Juan Pablo Amelio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Calderini, Ornella. Istituto di Bioscienze e Biorisorse; ItaliaFil: Paolocci, Francesco. Istituto di Bioscienze e Biorisorse; ItaliaFil: Cáceres, Maria E.. Istituto di Bioscienze e Biorisorse; ItaliaFil: Kaushal, Pankaj. Istituto di Bioscienze e Biorisorse; ItaliaFil: Grisan, Simone. Istituto di Bioscienze e Biorisorse; ItaliaFil: Pessino, Silvina Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Pupilli, Fulvio. Istituto di Bioscienze e Biorisorse; Itali

    Collection of mutants for functional genomics in the legume <i>Medicago truncatula</i>

    No full text
    We have established mutant collections of the model species Medicago truncatula according to current protocols. In particular, we used a transposon (Tnt1) tagging method and an ethyl methanesulfonate (EMS) mutagenesis approach (TILLING). The collections were subjected to both forward and reverse genetics screenings, and several mutants were isolated that affect plant traits (e.g. shoot, root developments, flower morphology, etc.) and also biosynthetic pathways of secondary compounds (saponins and tannins). Genes responsible for some of the mutations were cloned and further characterized

    Estratti di Ascophyllum nodosum per migliorare la maturazione fenolica delle uve

    No full text
    In conclusione, l\u2019utilizzo di biostimolanti a base dell\u2019alga bruna Ascophyllum nodosum pu\uf2 essere una soluzione utile da adottare nei casi in cui le condizioni ambientali rappresentano un ostacolo per il raggiungimento di una adeguata maturazione fenolica. Tali composti sono infatti capaci di stimolare la biosintesi di antociani e polifenoli nelle bucce, senza modificare la concentrazione di zuccheri e acidi organici nelle uve, permettendo di ottenere vini con un miglior profilo cromatico e fenolico, a parit\ue0 di titolo alcolico
    corecore