515 research outputs found

    STAR Results on High Transverse Momentum, Heavy Flavor and Electromagnetic Probes

    Get PDF
    We summarize here recent results from the STAR collaboration focusing on processes involving large momentum transfers. Measurements of angular correlations of di-hadrons are explored in both the pseudorapidity (eta) and azimuthal (phi) projections. In central Au+Au, an elongated structure is found in the eta projection which persists up to the highest measured pT. After quantifying the particle yield in this structure and subtracting it from the near-side yield, we observe that the remainder exhibits a behavior strikingly similar to that of the near-side yield in d+Au. For heavy flavor production, using electron-hadron correlations in p+p collisions, we obtain an estimate of the b-quark contribution to the non-photonic electrons in the pT region 3-6 GeV/c, and find it consistent with FONLL calculations. Together with the observed suppression of non-photonic electrons in Au+Au, this strongly suggests suppression of b-quark production in Au+Au collisions. We discuss results on the mid-rapidity Upsilon cross-section in p+p collisions. Finally, we present a proof-of-principle measurement of photon-hadron correlations in p+p collisions, paving the way for the tomographic study of the matter produced in central Au+Au via gamma-jet measurements.Comment: 8 pages, 4 figures. Proceedings of "Quark Matter 2006", 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collision

    The STAR Time Projection Chamber: A Unique Tool for Studying High Multiplicity Events at RHIC

    Full text link
    The STAR Time Projection Chamber (TPC) is used to record collisions at the Relativistic Heavy Ion Collider (RHIC). The TPC is the central element in a suite of detectors that surrounds the interaction vertex. The TPC provides complete coverage around the beam-line, and provides complete tracking for charged particles within +- 1.8 units of pseudo-rapidity of the center-of-mass frame. Charged particles with momenta greater than 100 MeV/c are recorded. Multiplicities in excess of 3,000 tracks per event are routinely reconstructed in the software. The TPC measures 4 m in diameter by 4.2 m long, making it the largest TPC in the world.Comment: 28 pages, 11 figure

    Centrality and Transverse Momentum Dependence of Elliptic Flow of Multistrange Hadrons and \u3cem\u3eϕ\u3c/em\u3e Meson in Au + Au Collisions at √\u3cem\u3e\u3csup\u3es\u3c/sup\u3e\u3csub\u3eNN\u3c/sub\u3e\u3c/em\u3e = 200 GeV

    Get PDF
    We present high precision measurements of elliptic flow near midrapidity (|y| \u3c 1.0) for multistrange hadrons and ϕ meson as a function of centrality and transverse momentum in Au + Au collisions at center of mass energy √sNN = 200  GeV. We observe that the transverse momentum dependence of ϕ and Ω υ2 is similar to that of π and p, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0%–30% and 30%–80% collision centrality. There is an indication of the breakdown of previously observed mass ordering between ϕ and proton υ2 at low transverse momentum in the 0%–30% centrality range, possibly indicating late hadronic interactions affecting the proton υ2

    \u3cem\u3eJ/ψ\u3c/em\u3e Production at Low Transverse Momentum in \u3cem\u3ep\u3c/em\u3e + \u3cem\u3ep\u3c/em\u3e and \u3cem\u3ed\u3c/em\u3e + Au Collisions at √\u3cem\u3e\u3csup\u3es\u3c/sup\u3e\u3csub\u3eNN\u3c/sub\u3e\u3c/em\u3e = 200 GeV

    Get PDF
    We report on the measurement of J/ψ production in the dielectron channel at midrapidity (|y| \u3c 1) in p + p and d + Au collisions at √sNN = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum pTspectra in p + p for pT \u3c 4 GeV/c and d + Au collisions for pT \u3c 3 GeV/c are presented. These measurements extend the STAR coverage for J/ψ production in p + p collisions to low pT. The ⟨p2T⟩ from the measured J/ψ invariant cross section in p + p and d + Au collisions are evaluated and compared to similar measurements at other collision energies. The nuclear modification factor for J/ψ is extracted as a function of pT and collision centrality in d + Au and compared to model calculations using the modified nuclear parton distribution function and a final-state J/ψ nuclear absorption cross section

    Probing Parton Dynamics of QCD Matter with Ω and \u3cem\u3eϕ\u3c/em\u3e Production

    Get PDF
    We present measurements of Ω and ϕ production at midrapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies √sNN = 7.7, 11.5, 19.6, 27, and 39 GeV by the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of N (Ω- + Ω−+) / [2N(ϕ)]. These ratios as a function of transverse momentum pT fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at √sNN = 19.6, 27, and 39 GeV, and in central collisions at 11.5 GeV in the intermediate pT region of 2.4−3.6 GeV/c. We further evaluate empirically the strange quark pT distributions at hadronization by studying the Ω/ϕ ratios scaled by the number of constituent quarks (NCQ). The NCQ-scaled Ω/ϕ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to √sNN ≥ 19.6 GeV. The shapes of the presumably thermal strange quark distributions in 0–60% most central collisions at 7.7 GeV show significant deviations from those in 0–10% most central collisions at higher energies. These features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark matter to hadronic matter at collision energies below 19.6 GeV

    Measurement of Elliptic Flow of Light Nuclei at √\u3cem\u3e\u3csup\u3eS\u3c/sup\u3e\u3csub\u3eNN\u3c/sub\u3e\u3c/em\u3e = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    Get PDF
    We present measurements of second-order azimuthal anisotropy (υ2) at midrapidity (|y| \u3c 1.0) for light nuclei d, t, 3He (for ⎷sNN = 200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The υ2 for these light nuclei produced in heavy-ion collisions is compared with those for p and p¯. We observe mass ordering in nuclei υ2 (pT) at low transverse momenta (pT \u3c 2.0 GeV/c). We also find a centrality dependence of υ2 for d and d¯. The magnitude of υ2 for t and 3He agree within statistical errors. Light-nuclei υ2 are compared with predictions from a blast-wave model. Atomic mass number (A) scaling of light-nuclei υ2 (pT) seems to hold for pT/A \u3c 1.5 GeV/c. Results on light-nuclei υ2 from a transport-plus-coalescence model are consistent with the experimental measurements

    Centrality Dependence of Identified Particle Elliptic Flow in Relativistic Heavy Ion Collisions at √\u3cem\u3e\u3csup\u3es\u3c/sup\u3e\u3csub\u3eNN\u3c/sub\u3e\u3c/em\u3e = 7.7–62.4 GeV

    Get PDF
    Elliptic flow (υ2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at √sNN = 7.7– 62.4 GeV are presented for three centrality classes. The centrality dependence and the data at √sNN = 14.5 GeV are new. Except at the lowest beam energies, we observe a similar relative υ2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger υ2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with a multiphase transport (AMPT) model and fit with a blast wave model

    Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au + Au Collisions at RHIC

    Get PDF
    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au + Au collisions for energies ranging from √sNN = 7.7 to 200 GeV. The third harmonic υ23 {2} = ⟨cos3(ϕ1−ϕ2)⟩, where ϕ1−ϕ2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δη = η1− η2. Nonzero υ23 {2} is directly related to the previously observed large-Δη narrow-Δϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, υ23 {2} persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, υ23 {2} is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, υ23 {2} for central collisions shows a minimum near √sNN = 20 GeV

    Measurement of the Transverse Single-Spin Asymmetry in \u3cem\u3ep\u3c/em\u3e\u3csup\u3e↑\u3c/sup\u3e+\u3cem\u3ep\u3c/em\u3e→\u3cem\u3eW\u3c/em\u3e\u3csup\u3e±\u3c/sup\u3e/\u3cem\u3eZ\u3c/em\u3e\u3csup\u3e0\u3c/sup\u3e at RHIC

    Get PDF
    We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at √s = 500  GeV by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse-momentum-dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the nonuniversality of the Sivers function, fundamental to our understanding of QCD

    Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at Energies Available at the BNL Relativistic Heavy Ion Collider

    Get PDF
    Balance functions have been measured in terms of relative pseudorapidity (Δη) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √sNN = 7.7GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √sNN = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √sNN = 7.7 GeV implies that a QGP is still being created at this relatively low energy
    corecore