9 research outputs found

    Qualitative and anatomical characteristics of tree-shrub legumes in the Forest Zone in Pernambuco state, Brazil

    No full text
    The objective of this study was to characterize the nutritional value of forage legumes Mimosa caesalpiniifolia (Benth.), Bauhinia cheilantha (Bong.) and Leucaena leucocephala (Lan.) and evaluate the anatomy of plants incubated and not incubated in the rumen. The experiment was conducted from September 2007 to November 2008. The experimental plot consisted of three useful plants, totaling three plots per block, and four repetitions. Plants were cut at 1 m height at intervals of 70 days; samples of leaf plus stem with a diameter smaller than 4 mm were collected for determination of dry matter, crude protein, neutral detergent fiber, acid detergent fiber, insoluble protein bound to acid detergent fiber and in vitro dry matter digestibility. The anatomical characterization occurred through the analysis of the proportion of plant tissue nonincubated and incubated in the rumen for a period of 48 hours. The legumes had high crude protein, with an average of 26.1% to Leucena, 22.4% to Sabiá and 18.5% to Mororó, and low levels of in vitro digestibility of dry matter, with an average of 47.3% to Leucena, 42.8% to Mororó and 37.2% to Sabiá. In the leaf blade of Sabiá plants, much lignified tissues that differed from plants of Leucena and Mororó were observed. The degradation process was more visible in the leaves of the Leucena, Sabiá and Mororó plants. The degradation was more pronounced in the spongy parenchyma, leaving the incubated material intact. The average proportion of the epidermis in the incubated and not incubated leaves was 15.8 and 16.4% in Leucena, 16.8 and 19.2% in Mororó and 27.2 and 25.5% in Sabiá, respectively. There are differences in the digestion and nutritional value of leaf tissues of the evaluated legumes

    Pan-cancer analysis of whole genomes

    No full text
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation; analyses timings and patterns of tumour evolution; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity; and evaluates a range of more-specialized features of cancer genomes
    corecore