14 research outputs found

    Effects of co-incubation of LPS-stimulated RAW 264.7 macrophages on leptin production by 3T3-L1 adipocytes: a method for co-incubating distinct adipose tissue cell lines

    Get PDF
    BACKGROUND: Adipose tissue is a major endocrine organ capable of releasing inflammatory adipokines that are linked to changes occurring in the overfed state, where tissue remodeling results in hypertrophic adipocytes that recruit monocytes to infiltrate the tissue and take on an inflammatory phenotype. Increases in macrophage-specific inflammatory mediator levels contribute to the inflamed state and worsen the inflammatory loop between the macrophages and adipocytes. Although most inflammatory adipokines are released by macrophages, adipocytes can also release immunomodulatory adipokines, such as leptin. The objective of this research was to determine if co-incubation of activated macrophages with mature adipocytes, using transwell inserts, affected adipocyte leptin release. We also examined if there were differences in levels of cell-secreted products quantified in cell-conditioned media collected from macrophage-containing (transwell insert) and adipocyte-containing (well) compartments. METHODS: Mature adipocytes were co-incubated with control and lipopolysaccharide-stimulated (0.01 mg/ml) murine macrophages, and nitric oxide, interleukin-6, and leptin levels were quantified in the cell-conditioned media from both compartments. RESULTS: Activation status of the macrophages did not affect leptin release by the adipocytes. We observed higher amounts of leptin in wells compared to transwells. Nitric oxide and interleukin-6 levels were similar between transwells and wells, suggesting that these adipokines travel through the transwell inserts and are reaching equilibrium between the two compartments. CONCLUSION: Our results suggest that co-incubating activated macrophages and adipocytes using transwell inserts can result in distinct microenvironments in the different cellular compartments and that separate sampling of these compartments is required to detect the subtle signaling dynamics that exist between these cells. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42269-022-00747-7

    Quantifying Fat Droplet Size

    No full text
    corecore