575 research outputs found

    Investigation of long-lived eddies on Jupiter

    Get PDF
    Quasi-geostrophic, two layer models of the Jovian atmosphere are under development; these may be used to simulate eddy phemonena in the atmosphere and include tracer dynamics explicitly. The models permit the investigation of the dynamics of quasi-geostrophic eddies under more controlled conditions than are possible in the laboratory. They can also be used to predict the distribution and behavior of tracer species, and hence to discriminate between different models of the mechanisms forcing the eddies, provided suitable observations can be obtained. At the same time, observational strategies are being developed for the Near Infrared Mapping Spectrometer on the Galileo Orbiter, with the objective of obtaining composition measurements for comparison with the models. Maps of features at thermal infrared wavelengths near 5 micron and reflected sunlight maps as a function of wavelength and phase angle will be obtained. These should provide further useful information on the morphology, composition and microstructure of clouds within eddy features. Equilibrium chemistry models which incorporate advection may then be used to relate these results of the dynamical models and provide addtional means of classifying different types of eddies

    The Acid Soluble Disulphide and Mixed Disulphide Levels of Some Normal Tissues and Transplanted Tumours

    Get PDF
    The acid soluble disulphides and mixed disulphides of a range of normal rat and mouse tissues and a number of transplanted rat or mouse tumours were measured. The result were considered in relation to other workers' data. It is noted that more radioresponsive tissues have higher levels than the more radioresistant tissues

    Linear dust polarization during the embedded phase of protostar formation

    Get PDF
    Measuring polarization from thermal dust emission can provide constraints on the magnetic field structure around embedded protostars. However, interpreting the observations is challenging without models that consistently account for both the complexity of the protostellar birth environment and polarization mechanisms. We aim to provide a better understanding with a focus on bridge-like structures such as that observed towards the protostellar multiple IRAS 16293--2422 by comparing synthetic polarization maps of thermal reemission with observations. We analyze the magnetic field properties associated with the formation of a protostellar multiple based on ideal MHD 3D zoom-in simulations carried out with the RAMSES code. To compare with observations, we post-process a snapshot of a bridge-like structure that is associated with a forming triple star system with the radiative transfer code POLARIS and produce multi-wavelength dust polarization maps. In the most prominent bridge of our sample, the typical density is about 10^(-16) g cm^(-3), and the magnetic field strength is about 1 to 2 mG. The magnetic field structure has an elongated toroidal morphology and the dust polarization maps trace the complex morphology. In contrast, the magnetic field strength associated with the launching of asymmetric bipolar outflows is significantly more magnetized (~100 mG). At {\lambda}=1.3 mm, the orientation of grains in the bridge is similar for the case accounting for radiative alignment torques (RATs) compared to perfect alignment with magnetic field lines. However, the polarization fraction in the bridge is three times smaller for the RAT scenario compared to assuming perfect alignment. At shorter wavelengths ({\lambda} < 200 {\mu}m), dust polarization does not trace the magnetic field because other effects such as self-scattering and dichroic extinction dominate the orientation of the polarization.Comment: 18 pages, 12 figures plus 3 figures in the appendix, accepted for publication in A&
    • …
    corecore