72 research outputs found
Sorption enhanced steam methane reforming in a bubbling fluidized bed reactor: Simulation and analysis by the CPFD method
This work reports the modelling and simulation results of a bubbling fluidized bed reactor using the Computational Particle Fluid Dynamics (CPFD) method of the Barracuda® software. The reactor under investigation is the carbonator installed in the ENEA ZECOMIX research infrastructure, where Steam Methane Reforming (SMR) happens simultaneous with CO2 capture via solid sorbents. In this intensified process, namely Sorption Enhanced Steam Methane Reforming (SE-SMR), steam methane reforming is coupled with high temperature CO2 sorption and calcium looping (CaL) process, in order to increase the H2 yield, beyond thermodynamic limits. Currently, the reactor is operated in batch mode and is used also for sorbent regeneration, by switching the fluidizing gas flow from steam/methane to oxy-burner combustion products. With the aim of studying the process when it is operated as a closed loop, in this paper the reactor is continuously fed by a fresh sorbent flow and a riser/calciner reactor for sorbent regeneration, to be connected with the carbonator, has been sized. The continuous circulation of solid material between the two reactors ensures the maintenance of different operating temperatures and therefore greater operational optimization. The numerical analysis presented in this paper will serve as a valid support for the experimental activities. For this purpose, a sensitivity study on the SE-SMR process has been conducted, by varying the main operating conditions (e.g. sorbent conversion, sorbent/catalyst ratio, fluidizing gas flow), to evaluate the hydrogen purity yield. Two different kinetic mechanisms have been compared for the gas phase reactions. A post-processing routine has been written, in order to analyze bubbles sizes and velocities inside the fluidized environment. The effect of sorbent and catalyst particles segregation has been also investigated. The same modelling approach has been used for the sizing of the fast riser calciner reactor
Tor vergata Synoptic Solar Telescope: Preliminary optical design and spectral characterization
Synoptic telescopes are fundamental tools in solar physics. They are tipically used for high cadence full-disk observations of the Sun at different wavelengths, in order to study the solar activity across the solar cycle. The TSST (Tor vergata Synoptic Solar Telescope) is a new synoptic telescope composed of a Ha filter-based telescope centered at 656 nm and a custom Magneto Optical Filter (MOF)-based telescope centered in the potassium (KI D1) absorption line at 770 nm. Observations of the Ha line are important for the detection of flaring regions and to track the Sun during the acquisition. The aim of the telescope is to monitor the solar activity using the line of sight (LoS) magnetograms and dopplergrams of the solar photosphere produced by the MOF-based telescope. Magnetograms are essential for the study of the geometry of the magnetic field in active regions, while dopplergrams can be used to study the dynamics of the solar lower atmosphere. In this work, we focus our attention on the custom MOF-based telescope. Firstly, we present the optical design of the instrument. It is a refractor telescope with a 80 mm aperture and an effective focal length of ∼1m. We also present details on the preliminary spectral characterization of this instrument at different cell temperatures, which is a mandatory step to calibrate magnetograms and dopplergrams. The results obtained during this first test are in agreement with the peaks separation (∼200 mÅ) and FWHM (∼ 50 mÅ) that we expected
Gas Turbine Combustion Technologies for Hydrogen Blends
The article reviews gas turbine combustion technologies focusing on their current ability to operate with hydrogen enriched natural gas up to 100% (Formula presented.). The aim is to provide a picture of the most promising fuel-flexible and clean combustion technologies, the object of current research and development. The use of hydrogen in the gas turbine power generation sector is initially motivated, highlighting both its decarbonisation and electric grid stability objectives; moreover, the state-of-the-art of hydrogen-blend gas turbines and their 2024 and 2030 targets are reported in terms of some key performance indicators. Then, the changes in combustion characteristics due to the hydrogen enrichment of natural gas blends are briefly described, from their enhanced reactivity to their pollutant emissions. Finally, gas turbine combustion strategies, both already commercially available (mostly based on aerodynamic flame stabilisation, self-ignition, and staging) or still under development (like the micro-mixing and the exhaust gas recirculation concepts), are described
Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition
The aim of this article is to review hydrogen combustion applications within the energy transition framework. Hydrogen blends are also included, from the well-known hydrogen enriched natural gas (HENG) to the hydrogen and ammonia blends whose chemical kinetics is still not clearly defined. Hydrogen and hydrogen blends combustion characteristics will be firstly summarized in terms of standard properties like the laminar flame speed and the adiabatic flame temperature, but also evidencing the critical role of hydrogen preferential diffusion in burning rate enhancement and the drastic reduction in radiative emission with respect to natural gas flames. Then, combustion applications in both thermo-electric power generation (based on internal combustion engines, i.e., gas turbines and piston engines) and hard-to-abate industry (requiring high-temperature kilns and furnaces) sectors will be considered, highlighting the main issues due to hydrogen addition related to safety, pollutant emissions, and potentially negative effects on industrial products (e.g., glass, cement and ceramic)
Testing the steady-state fluctuation relation in the solar photospheric convection
The turbulent thermal convection on the Sun is an example of an irreversible non-equilibrium phenomenon in a quasi-steady state characterized by a continuous entropy production rate. Here, the statistical features of a proxy of the local entropy production rate, in solar quiet regions at different timescales, are investigated and compared with the symmetry conjecture of the steady-state fluctuation theorem by Gallavotti and Cohen. Our results show that solar turbulent convection satisfies the symmetries predicted by the fluctuation relation of the Gallavotti and Cohen theorem at a local level
Data reduction pipeline for MOF-based synoptic telescopes
There are strong scientific cases and practical reasons for building ground-based solar synoptic telescopes. Some issues, like the study of solar dynamics and the forecasting of solar flares, benefit from the 3D reconstruction of the Sun's atmosphere and magnetic field. Others, like the monitoring and prediction of space weather, require full disk observations, at the proper sampling rate, combining H-alpha images and Doppler velocity and magnetic field. The synoptic telescopes based on Magneto Optical Filters (MOF) using different lines are capable of measuring the line-of-sight Doppler velocity and magnetic field over the full solar disk at different ranges of height in the Sun's photosphere and low chromosphere. Instruments like the MOTH (Magneto-Optical filters at Two Heights), using a dual-channel based on MOFs operating at 589.0 nm (Na D2 line) and 769.9 nm (K D1 line), the VAMOS instrument (Velocity And Magnetic Observations of the Sun), operating at 769.9 nm (K D1 line), and the future TSST (Tor Vergata Synoptic Solar Telescope), using a dual-channel telescope operating at 656.28 nm (H-alpha line) and at 769.9 nm (K D1 line), allow to face both aspects, the scientific and the operative related to Space Weather applications. The MOTH, VAMOS and TSST data enable a wide variety of studies of the Sun, from seismic probing of the solar interior (sound speed, rotation, details of the tachocline, sub-surface structure of active regions), to the dynamics and magnetic evolution of the lower part of the solar atmosphere (heating of the solar atmosphere, identification of the signatures of solar eruptive events, atmospheric gravity waves, etc.), to the 3D reconstruction of the solar atmosphere and flare locations. However, the use of MOF filters requires special care in calibrating the data for scientific or operational use. This work presents a systematic pipeline that derives from the decennial use of MOF's technology. More in detail, the pipeline is based on data reduction procedures tested and validated on MOTH data acquired at Mees Solar Observatory of the University of Hawaii Haleakala Observatories and at South Pole Solar Observatory (SPSO), at the Amundsen-Scott South Pole Station in Antarctica, during Antarctica Summer Campaign 2016/17
A multiple spacecraft detection of the 2 April 2022 M-class flare and filament eruption during the first close Solar Orbiter perihelion
CONTEXT:
The Solar Orbiter mission completed its first remote-sensing observation windows in the spring of 2022. On 2 April 2022, an M-class flare followed by a filament eruption was seen both by the instruments on board the mission and from several observatories in Earth’s orbit, providing an unprecedented view of a flaring region with a large range of observations.
AIMS:
We aim to understand the nature of the flaring and filament eruption events via the analysis of the available dataset. The complexity of the observed features is compared with the predictions given by the standard flare model in 3D.
METHOD:
In this paper, we use the observations from a multi-view dataset, which includes extreme ultraviolet (EUV) imaging to spectroscopy and magnetic field measurements. These data come from the Interface Region Imaging Spectrograph, the Solar Dynamics Observatory, Hinode, as well as several instruments on Solar Orbiter.
RESULTS:
The large temporal coverage of the region allows us to analyse the whole sequence of the filament eruption starting with its pre-eruptive state. Information given by spectropolarimetry from SDO/HMI and Solar Orbiter PHI/HRT shows that a parasitic polarity emerging underneath the filament is responsible for bringing the flux rope to an unstable state. As the flux rope erupts, Hinode EIS captures blue-shifted emission in the transition region and coronal lines in the northern leg of the flux rope prior to the flare peak. This may be revealing the unwinding of one of the flux rope legs. At the same time, Solar Orbiter SPICE captures the whole region, complementing the Doppler diagnostics of the filament eruption. Analyses of the formation and evolution of a complex set of flare ribbons and loops, of the hard and soft X-ray emissions with STIX, show that the parasitic emerging bipole plays an important role in the evolution of the flaring region.
CONCLUSIONS:
The extensive dataset covering this M-class flare event demonstrates how important multiple viewpoints and varied observations are in order to understand the complexity of flaring regions. While the analysed data are overall consistent with the standard flare model, the present particular magnetic configuration shows that surrounding magnetic activity such as nearby emergence needs to be taken into account to fully understand the processes at work. This filament eruption is the first to be covered from different angles by spectroscopic instruments, and provides an unprecedented diagnostic of the multi-thermal structures present before and during the flare. This complete dataset of an eruptive event showcases the capabilities of coordinated observations with the Solar Orbiter mission
Coronal hole picoflare jets are progenitors of both fast and Alfvénic slow solar wind
Solar wind, classified by its bulk speed and the Alfvénic nature of its fluctuations, generates the heliosphere. The elusive physical processes responsible for the generation of the different types of this wind are a topic of active debate. Recent observations reveal intermittent jets, with kinetic energy in the picoflare range, emerging from dark areas of a polar coronal hole threaded by open magnetic field lines. These could substantially contribute to solar wind. However, their ubiquity and direct links to solar wind have not been established. Here, we report a unique set of remote-sensing and in situ observations from the Solar Orbiter spacecraft that establish a unified picture of fast and Alfvénic slow wind, connected to the similar widespread picoflare jet activity in two coronal holes. Radial expansion of coronal holes ultimately regulates the speed of the emerging wind
Fleeting small-scale surface magnetic fields build the quiet-Sun corona
Arch-like loop structures filled with million Kelvin hot plasma form the
building blocks of the quiet-Sun corona. Both high-resolution observations and
magnetoconvection simulations show the ubiquitous presence of magnetic fields
on the solar surface on small spatial scales of 100\,km. However, the
question of how exactly these quiet-Sun coronal loops originate from the
photosphere and how the magnetic energy from the surface is channeled to heat
the overlying atmosphere is a long-standing puzzle. Here we report
high-resolution photospheric magnetic field and coronal data acquired during
the second science perihelion of Solar Orbiter that reveal a highly dynamic
magnetic landscape underlying the observed quiet-Sun corona. We found that
coronal loops often connect to surface regions that harbor fleeting weaker,
mixed-polarity magnetic field patches structured on small spatial scales, and
that coronal disturbances could emerge from these areas. We suggest that weaker
magnetic fields with fluxes as low as \,Mx and or those that evolve on
timescales less than 5\,minutes, are crucial to understand the coronal
structuring and dynamics.Comment: Accepted for publication in The Astrophysical Journal Letter
Magnetic fields inferred by Solar Orbiter: A comparison between SO/PHI-HRT and SDO/HMI
The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic
Imager on board the Solar Orbiter spacecraft (SO/PHI) and the Helioseismic and
Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) both infer
the photospheric magnetic field from polarised light images. SO/PHI is the
first magnetograph to move out of the Sun--Earth line and will provide
unprecedented access to the Sun's poles. This provides excellent opportunities
for new research wherein the magnetic field maps from both instruments are used
simultaneously. We aim to compare the magnetic field maps from these two
instruments and discuss any possible differences between them. We used data
from both instruments obtained during Solar Orbiter's inferior conjunction on 7
March 2022. The HRT data were additionally treated for geometric distortion and
degraded to the same resolution as HMI. The HMI data were re-projected to
correct for the separation between the two observatories.
SO/PHI-HRT and HMI produce remarkably similar line-of-sight magnetograms, with
a slope coefficient of , an offset below G, and a Pearson correlation
coefficient of . However, SO/PHI-HRT infers weaker line-of-sight fields
for the strongest fields. As for the vector magnetic field, SO/PHI-HRT was
compared to both the -second and -second HMI vector magnetic field:
SO/PHI-HRT has a closer alignment with the -second HMI vector. In the weak
signal regime ( G), SO/PHI-HRT measures stronger and more horizontal
fields than HMI, very likely due to the greater noise in the SO/PHI-HRT data.
In the strong field regime ( G), HRT infers lower field strengths
but with similar inclinations (a slope of ) and azimuths (a slope of
). The slope values are from the comparison with the HMI -second
vector.Comment: 10 pages, 5 figures, accepted for publication in A&A; manuscript is a
part of Astronomy & Astrophysics special issue: Solar Orbiter First Results
(Nominal Mission Phase
- …
