49 research outputs found

    Tor vergata Synoptic Solar Telescope: Preliminary optical design and spectral characterization

    Get PDF
    Synoptic telescopes are fundamental tools in solar physics. They are tipically used for high cadence full-disk observations of the Sun at different wavelengths, in order to study the solar activity across the solar cycle. The TSST (Tor vergata Synoptic Solar Telescope) is a new synoptic telescope composed of a Ha filter-based telescope centered at 656 nm and a custom Magneto Optical Filter (MOF)-based telescope centered in the potassium (KI D1) absorption line at 770 nm. Observations of the Ha line are important for the detection of flaring regions and to track the Sun during the acquisition. The aim of the telescope is to monitor the solar activity using the line of sight (LoS) magnetograms and dopplergrams of the solar photosphere produced by the MOF-based telescope. Magnetograms are essential for the study of the geometry of the magnetic field in active regions, while dopplergrams can be used to study the dynamics of the solar lower atmosphere. In this work, we focus our attention on the custom MOF-based telescope. Firstly, we present the optical design of the instrument. It is a refractor telescope with a 80 mm aperture and an effective focal length of ∌1m. We also present details on the preliminary spectral characterization of this instrument at different cell temperatures, which is a mandatory step to calibrate magnetograms and dopplergrams. The results obtained during this first test are in agreement with the peaks separation (∌200 mÅ) and FWHM (∌ 50 mÅ) that we expected

    Testing the steady-state fluctuation relation in the solar photospheric convection

    Get PDF
    The turbulent thermal convection on the Sun is an example of an irreversible non-equilibrium phenomenon in a quasi-steady state characterized by a continuous entropy production rate. Here, the statistical features of a proxy of the local entropy production rate, in solar quiet regions at different timescales, are investigated and compared with the symmetry conjecture of the steady-state fluctuation theorem by Gallavotti and Cohen. Our results show that solar turbulent convection satisfies the symmetries predicted by the fluctuation relation of the Gallavotti and Cohen theorem at a local level

    Data reduction pipeline for MOF-based synoptic telescopes

    Get PDF
    There are strong scientific cases and practical reasons for building ground-based solar synoptic telescopes. Some issues, like the study of solar dynamics and the forecasting of solar flares, benefit from the 3D reconstruction of the Sun's atmosphere and magnetic field. Others, like the monitoring and prediction of space weather, require full disk observations, at the proper sampling rate, combining H-alpha images and Doppler velocity and magnetic field. The synoptic telescopes based on Magneto Optical Filters (MOF) using different lines are capable of measuring the line-of-sight Doppler velocity and magnetic field over the full solar disk at different ranges of height in the Sun's photosphere and low chromosphere. Instruments like the MOTH (Magneto-Optical filters at Two Heights), using a dual-channel based on MOFs operating at 589.0 nm (Na D2 line) and 769.9 nm (K D1 line), the VAMOS instrument (Velocity And Magnetic Observations of the Sun), operating at 769.9 nm (K D1 line), and the future TSST (Tor Vergata Synoptic Solar Telescope), using a dual-channel telescope operating at 656.28 nm (H-alpha line) and at 769.9 nm (K D1 line), allow to face both aspects, the scientific and the operative related to Space Weather applications. The MOTH, VAMOS and TSST data enable a wide variety of studies of the Sun, from seismic probing of the solar interior (sound speed, rotation, details of the tachocline, sub-surface structure of active regions), to the dynamics and magnetic evolution of the lower part of the solar atmosphere (heating of the solar atmosphere, identification of the signatures of solar eruptive events, atmospheric gravity waves, etc.), to the 3D reconstruction of the solar atmosphere and flare locations. However, the use of MOF filters requires special care in calibrating the data for scientific or operational use. This work presents a systematic pipeline that derives from the decennial use of MOF's technology. More in detail, the pipeline is based on data reduction procedures tested and validated on MOTH data acquired at Mees Solar Observatory of the University of Hawaii Haleakala Observatories and at South Pole Solar Observatory (SPSO), at the Amundsen-Scott South Pole Station in Antarctica, during Antarctica Summer Campaign 2016/17

    A multiple spacecraft detection of the 2 April 2022 M-class flare and filament eruption during the first close Solar Orbiter perihelion

    Get PDF
    CONTEXT: The Solar Orbiter mission completed its first remote-sensing observation windows in the spring of 2022. On 2 April 2022, an M-class flare followed by a filament eruption was seen both by the instruments on board the mission and from several observatories in Earth’s orbit, providing an unprecedented view of a flaring region with a large range of observations. AIMS: We aim to understand the nature of the flaring and filament eruption events via the analysis of the available dataset. The complexity of the observed features is compared with the predictions given by the standard flare model in 3D. METHOD: In this paper, we use the observations from a multi-view dataset, which includes extreme ultraviolet (EUV) imaging to spectroscopy and magnetic field measurements. These data come from the Interface Region Imaging Spectrograph, the Solar Dynamics Observatory, Hinode, as well as several instruments on Solar Orbiter. RESULTS: The large temporal coverage of the region allows us to analyse the whole sequence of the filament eruption starting with its pre-eruptive state. Information given by spectropolarimetry from SDO/HMI and Solar Orbiter PHI/HRT shows that a parasitic polarity emerging underneath the filament is responsible for bringing the flux rope to an unstable state. As the flux rope erupts, Hinode EIS captures blue-shifted emission in the transition region and coronal lines in the northern leg of the flux rope prior to the flare peak. This may be revealing the unwinding of one of the flux rope legs. At the same time, Solar Orbiter SPICE captures the whole region, complementing the Doppler diagnostics of the filament eruption. Analyses of the formation and evolution of a complex set of flare ribbons and loops, of the hard and soft X-ray emissions with STIX, show that the parasitic emerging bipole plays an important role in the evolution of the flaring region. CONCLUSIONS: The extensive dataset covering this M-class flare event demonstrates how important multiple viewpoints and varied observations are in order to understand the complexity of flaring regions. While the analysed data are overall consistent with the standard flare model, the present particular magnetic configuration shows that surrounding magnetic activity such as nearby emergence needs to be taken into account to fully understand the processes at work. This filament eruption is the first to be covered from different angles by spectroscopic instruments, and provides an unprecedented diagnostic of the multi-thermal structures present before and during the flare. This complete dataset of an eruptive event showcases the capabilities of coordinated observations with the Solar Orbiter mission

    Fleeting small-scale surface magnetic fields build the quiet-Sun corona

    Full text link
    Arch-like loop structures filled with million Kelvin hot plasma form the building blocks of the quiet-Sun corona. Both high-resolution observations and magnetoconvection simulations show the ubiquitous presence of magnetic fields on the solar surface on small spatial scales of ∌\sim100\,km. However, the question of how exactly these quiet-Sun coronal loops originate from the photosphere and how the magnetic energy from the surface is channeled to heat the overlying atmosphere is a long-standing puzzle. Here we report high-resolution photospheric magnetic field and coronal data acquired during the second science perihelion of Solar Orbiter that reveal a highly dynamic magnetic landscape underlying the observed quiet-Sun corona. We found that coronal loops often connect to surface regions that harbor fleeting weaker, mixed-polarity magnetic field patches structured on small spatial scales, and that coronal disturbances could emerge from these areas. We suggest that weaker magnetic fields with fluxes as low as 101510^{15}\,Mx and or those that evolve on timescales less than 5\,minutes, are crucial to understand the coronal structuring and dynamics.Comment: Accepted for publication in The Astrophysical Journal Letter

    Magnetic fields inferred by Solar Orbiter: A comparison between SO/PHI-HRT and SDO/HMI

    Full text link
    The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager on board the Solar Orbiter spacecraft (SO/PHI) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) both infer the photospheric magnetic field from polarised light images. SO/PHI is the first magnetograph to move out of the Sun--Earth line and will provide unprecedented access to the Sun's poles. This provides excellent opportunities for new research wherein the magnetic field maps from both instruments are used simultaneously. We aim to compare the magnetic field maps from these two instruments and discuss any possible differences between them. We used data from both instruments obtained during Solar Orbiter's inferior conjunction on 7 March 2022. The HRT data were additionally treated for geometric distortion and degraded to the same resolution as HMI. The HMI data were re-projected to correct for the 3∘3^{\circ} separation between the two observatories. SO/PHI-HRT and HMI produce remarkably similar line-of-sight magnetograms, with a slope coefficient of 0.970.97, an offset below 11 G, and a Pearson correlation coefficient of 0.970.97. However, SO/PHI-HRT infers weaker line-of-sight fields for the strongest fields. As for the vector magnetic field, SO/PHI-HRT was compared to both the 720720-second and 9090-second HMI vector magnetic field: SO/PHI-HRT has a closer alignment with the 9090-second HMI vector. In the weak signal regime (<600< 600 G), SO/PHI-HRT measures stronger and more horizontal fields than HMI, very likely due to the greater noise in the SO/PHI-HRT data. In the strong field regime (≳600\gtrsim 600 G), HRT infers lower field strengths but with similar inclinations (a slope of 0.920.92) and azimuths (a slope of 1.021.02). The slope values are from the comparison with the HMI 9090-second vector.Comment: 10 pages, 5 figures, accepted for publication in A&A; manuscript is a part of Astronomy & Astrophysics special issue: Solar Orbiter First Results (Nominal Mission Phase

    Wavefront error of PHI/HRT on Solar Orbiter at various heliocentric distances

    Full text link
    We use wavefront sensing to characterise the image quality of the the High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (SO/PHI) data products during the second remote sensing window of the Solar Orbiter (SO) nominal mission phase. Our ultimate aims are to reconstruct the HRT data by deconvolving with the HRT point spread function (PSF) and to correct for the effects of optical aberrations on the data. We use a pair of focused--defocused images to compute the wavefront error and derive the PSF of HRT by means of a phase diversity (PD) analysis. The wavefront error of HRT depends on the orbital distance of SO to the Sun. At distances >0.5>0.5\,au, the wavefront error is small, and stems dominantly from the inherent optical properties of HRT. At distances <0.5<0.5\,au, the thermo-optical effect of the Heat Rejection Entrance Window (HREW) becomes noticeable. We develop an interpolation scheme for the wavefront error that depends on the thermal variation of the HREW with the distance of SO to the Sun. We also introduce a new level of image reconstruction, termed `aberration correction', which is designed to reduce the noise caused by image deconvolution while removing the aberrations caused by the HREW. The computed PSF via phase diversity significantly reduces the degradation caused by the HREW in the near-perihelion HRT data. In addition, the aberration correction increases the noise by a factor of only 1.451.45 compared to the factor of 33 increase that results from the usual PD reconstructions

    Stereoscopic disambiguation of vector magnetograms: first applications to SO/PHI-HRT data

    Full text link
    Spectropolarimetric reconstructions of the photospheric vector magnetic field are intrinsically limited by the 180∘^\circ-ambiguity in the orientation of the transverse component. So far, the removal of such an ambiguity has required assumptions about the properties of the photospheric field, which makes disambiguation methods model-dependent. The basic idea is that the unambiguous line-of-sight component of the field measured from one vantage point will generally have a non-zero projection on the ambiguous transverse component measured by the second telescope, thereby determining the ``true'' orientation of the transverse field. Such an idea was developed and implemented in the Stereoscopic Disambiguation Method (SDM), which was recently tested using numerical simulations. In this work we present a first application of the SDM to data obtained by the High Resolution Telescope (HRT) onboard Solar Orbiter during the March 2022 campaign, when the angle with Earth was 27 degrees. The method is successfully applied to remove the ambiguity in the transverse component of the vector magnetogram solely using observations (from HRT and from the Helioseismic and Magnetic Imager), for the first time. The SDM is proven to provide observation-only disambiguated vector magnetograms that are spatially homogeneous and consistent. A discussion about the sources of error that may limit the accuracy of the method, and of the strategies to remove them in future applications, is also presented.Comment: 32 pages, 12 figures, accepted in A&A on 09/07/202

    The ratio of horizontal to vertical displacement in solar oscillations estimated from combined SO/PHI and SDO/HMI observations

    Full text link
    In order to make accurate inferences about the solar interior using helioseismology, it is essential to understand all the relevant physical effects on the observations. One effect to understand is the (complex-valued) ratio of the horizontal to vertical displacement of the p- and f-modes at the height at which they are observed. Unfortunately, it is impossible to measure this ratio directly from a single vantage point, and it has been difficult to disentangle observationally from other effects. In this paper we attempt to measure the ratio directly using 7.5 hours of simultaneous observations from the Polarimetric and Helioseismic Imager on board Solar Orbiter and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. While image geometry problems make it difficult to determine the exact ratio, it appears to agree well with that expected from adiabatic oscillations in a standard solar model. On the other hand it does not agree with a commonly used approximation, indicating that this approximation should not be used in helioseismic analyses. In addition, the ratio appears to be real-valued.Comment: Accepted for publication in Astronomy & Astrophysics. 8 pages, 8 figure

    Prevalence of Fabry disease and GLA variants in young patients with acute stroke: the challenge to widen the screening. The Fabry-Stroke Italian Registry

    Get PDF
    Background: Fabry disease (FD) is a treatable X-linked lysosomal storage disorder caused by GLA gene variants leading to alpha-galactosidase A deficiency. FD is a rare cause of stroke, and it is still controversial whether in stroke patients FD should be searched from the beginning or at the end of the diagnostic workup (in cryptogenic strokes). Methods: Fabry-Stroke Italian Registry is a prospective, multicentric screening involving 33 stroke units. FD was sought by measuring α-galactosidase A activity (males) and by genetic tests (males with reduced enzyme activity and females) in patients aged 18–60 years hospitalized for TIA, ischemic stroke, or intracerebral hemorrhage. We diagnosed FD in patients with 1) already known pathogenic GLA variants; 2) novel GLA variants if additional clinical, laboratory, or family-derived criteria were present. Results: Out of 1906 patients, we found a GLA variant in 15 (0.79%; 95%CI 0.44–1.29) with a certain FD diagnosis in 3 (0.16%; 95%CI 0.03–0.46) patients, none of whom had hemorrhage. We identified 1 novel pathogenic GLA variant. Ischemic stroke etiologies in carriers of GLA variants were: cardioaortic embolism (33%), small artery occlusion (27%), other causes (20%), and undetermined (20%). Mild severity, recurrence, previous TIA, acroparesthesias, hearing loss, and small artery occlusion were predictors of GLA variant. Conclusion: In this large multicenter cohort the frequency of FD and GLA variants was consistent with previous reports. Limiting the screening for GLA variants to patients with cryptogenic stroke may miss up to 80% of diagnoses. Some easily recognizable clinical features could help select patients for FD screening
    corecore