47 research outputs found

    A comprehensive multiparametric and multilayer approach to study the preparation phase of large earthquakes from ground to space: The case study of the June 15 2019, M7.2 Kermadec Islands (New Zealand) earthquake

    Get PDF
    This work deals with a comprehensive multiparametric and multilayer approach to study earthquake-related processes that occur during the preparation phase of a large earthquake. As a case study, the paper investigates the M7.2 Kermadec Islands (New Zealand) large earthquake that occurred on June 15, 2019 as the result of shallow reverse faulting within the Tonga-Kermadec subduction zone. The analyses focused on seismic (earthquake catalogs), atmospheric (climatological archives) and ionospheric data from ground to space (mainly satellite) in order to disclose the possible Lithosphere-Atmosphere-Ionosphere Coupling (LAIC). The ionospheric investigations analysed and compared the Global Navigation Satellite System (GNSS) receiver network with in-situ observations from space thanks to both the European Space Agency (ESA) Swarm constellation and the China National Space Administration (CNSA in partnership with Italian Space Agency, ASI) satellite dedicated to search for possible ionospheric disturbances before medium-large earthquakes, i.e. the China Seismo-Electromagnetic Satellite (CSES-01). An interesting comparison is made with another subsequent earthquake with comparable magnitude (M7.1) that occurred in Ridgecrest, California (USA) on 6 July of the same year but in a different tectonic context. Both earthquakes showed anomalies in several parameters (e.g. aerosol, skin temperature and some ionospheric quantities) that appeared at almost the same times before each earthquake occurrence, evidencing a chain of processes that collectively point to the moment of the corresponding mainshock. In both cases, it is demonstrated that a comprehensive multiparametric and multilayer analysis is fundamental to better understand the LAIC in the occasion of complex phenomena such as earthquakes.This work was undertaken in the framework of Limadou-Science+ funded by ASI (Italian Space Agency). Part of the funds were also given by Working Earth (Pianeta Dinamico) Project. We thank GeoNet (NZ) for providing TEC data (we also thank Claudio Cesaroni and Luca Spogli for giving suggestions on TEC data analyses) and the Kyoto World Data Center for Geomagnetism (http://wdc.kugi.kyoto-u.ac.jp/) for providing geomagnetic data indices. ESA is thanked for providing the Swarm satellite data and the CNSA (Chinese National Space Administration) for providing CSES-01 satellite data

    Aberrant methylation within RUNX3 CpG island associated with the nuclear and mitochondrial microsatellite instability in sporadic gastric cancers. Results of a GOIM (Gruppo Oncologico dell'Italia Meridionale) prospective study.

    Get PDF
    Gastric cancer (GC) development is a multistep process, during which numerous alterations accumulate in nuclear and mitochondrial DNA. A deficiency of repair machinery brings about an accumulation of errors introduced within simple repetitive microsatellite sequences during replication of DNA. Aberrant methylation is related to microsatellite instability (MSI) by the silencing of the hMLH1 gene. The aim of this study is to investigate a possible relationship between the RUNX3 promoter methylation, nuclear microsatellite instability (nMSI) and mitochondrial microsatellite instability (mtMSI), in order to clarify its biological role in GC

    Towards a permanent deep sea observatory,: the GEOSTAR European Experiment.

    Get PDF
    GEOSTAR is the prototype of the first European long-term, multidisciplinary deep sea observatory for continuous monitoring of geophysical, geochemical and oceanographic parameters. Geostar is the example of a strong synergy between science and tecnology addressed to the development of new technological solutions for the observatory realisation and management. The GEOSTAR system is described outlining the enhancements introduced during five years of project activity. An example of data retrieved from the observatory being the deep sea mission running is also given.Published111-1202.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarinireserve

    GEOSTAR, an observatory for deep sea geophysical and oceanographic researches: characteristics, first scientific mission and future activity

    Get PDF
    GEOSTAR (GEophysical and Oceanographic STation for Abyssal Research) is a project funded by in the 4th Framework Programme of the European Commission, with the aim of developing an innovative deep sea benthic observatory capable of carrying out long-term (up to 1 year) scientific observations at abyssal depths. The configuration of the observatory, conceived to be a node of monitoring networks, is made up of two main subsystems: the Bottom Station, which in addition to the acquisition and power systems and all the sensors also hosts the communications systems; and the Mobile Docker, a dedicated tool for surface-assisted deployment and recovery. At present the Bottom Station is equipped with a triaxial broad-band seismometer, two magnetometers (fluxgate and scalar), CTD, transmissometer, ADCP, but it can easily host other sensors for different experiments. The first phase of the project, started in November 1995, was concluded with the demonstration mission in Adriatic Sea at shallow water depth (42 m) in August - September 1998. Some preliminary results of this first scientific experiment are presented and discussed. The second phase, started in 1999, will end with a long-term deep sea scientific mission, scheduled during 2000 for 6-8 months at 3400 m.w.d. in the southern Tyrrhenian bathyal plain.Published491-4973A. Ambiente MarinoN/A or not JCRrestricte

    Mission results from the first GEOSTAR observatory (Adriatic Sea, 1998)

    Get PDF
    We assess the first mission of the GEOSTAR (GEophysical and Oceanographic STation for Abyssal Research) deep-sea multidisciplinary observatory for its technical capacity, performance and quality of recorded data. The functioning of the system was verified by analyzing oceanographic, seismological and geomagnetic measurements. Despite the mission’s short duration (21 days), its data demonstrated the observatory’s technological reliability and scientific value. After analyzing the oceanographic data, we found two different regimes of seawater circulation and a sharp and deepening pycnocline, linked to a down-welling phenomenon. The reliability of the magnetic and seismological measurements was evaluated by comparison with those made using on-land sensors. Such comparison of magnetic signals recorded by permanent land geomagnetic stations and GEOSTAR during a “quiet” day and one with a magnetic storm confirmed the correct functioning of the sensor and allowed us to estimate the seafloor observatory’s orientation. The magnitudes of regional seismic events recorded by our GEOSTAR seismometer agreed with those computed from land stations. GEOSTAR has thus proven itself reliable for integrating other deep-sea observation systems, such as modular observatories, arrays, and instrumented submarine cablesPublished361-373ope

    Molecular analysis of TP53, Ki-Ras and P16 methylation status in tissue and plasma of subjects affected by gastrointestinal cancer (GIC)

    Get PDF
    BACKGROUND: Despite the improvement in detection and surgical therapy in the last years, the outcome of patients affected by colorectal carcinoma (CRC) remains limited by metastatic relapse. The aim of this study was to investigate the presence of free tumor DNA in the plasma of CRC patients in order to understand its possible prognostic role. PATIENTS AND METHODS: Ki-Ras, TP53 mutations and p16(INK4A) methylation status were prospectively evaluated in tumor tissues and plasma of 66 CRC patients. RESULTS: In 50 of the 66 primitive tumor cases (76%) at least one significant alteration was identified in Ki-Ras and/or TP53 and/or p16(INK4A) genes. Eighteen of the 50 patients presented the same alteration both in the plasma and in the tumor tissue. At univariate analysis, Ki-Ras mutations proved to be significantly related to quicker relapse (P <0.01), whereas only a trend towards statistical significance (P = 0.083) was observed for the TP53 mutations CONCLUSIONS: Detection of Ki-Ras and TP53 mutation in plasma should be significantly related to disease recurrence. These data suggest that patients with a high risk of recurrence can be identified by means of the analysis of tumor-derived plasma DNA with the use of fairly non-invasive techniques

    European Seafloor Observatory Offers New Possibilities For Deep Sea Study

    Get PDF
    The Geophysical and Oceanographic Station for Abyssal Research (GEOSTAR), an autonomous seafloor observatory that collects measurements benefiting a number of disciplines during missions up to 1 year long, will begin the second phase of its first mission in 2000. The 6-8 month investigation will take place at a depth of 3400 m in the southern Tyrrhenian basin of the southern Tyrrhenian basin of the central Mediterranean. GEOSTAR was funded by the European Community (EC) for 2.4million(U.S.dollars)in1995asapartoftheMarineScienceandTechnologyprogramme(MAST).TheinnovativedeploymentandrecoveryprocedureGEOSTARuseswasderivedfromthe"twomodule"conceptsuccessfullyappliedbyNASAintheApolloandspaceshuttlemissions,whereonemoduleperformstasksfortheother,includingdeployment,switchingonandoff,performingchecksandrecovery.Theobservatorycommunicationsystem,whichtakesadvantageofsatellitetelemetry,andthesimultaneousacquisitionofasetofvariousmeasurementswithauniquetimereferencemakeGEOSTARthefirstfundamentalelementofamultiparameteroceannetwork.GEOSTARsfirstscientificandtechnologicalmission,whichtookplaceinthesummerof1998intheAdriaticSea,verifiedtheperformanceandreliabilityofthesystem.Themissionwasasuccess.providing440hoursofcontinuousseismicmagneticandoceanographicdata.Thjesecondphaseofthemission,whichwasfundedbytheECfor2.4 million (U.S. dollars) in 1995 as a part of the Marine Science and Technology programme (MAST). The innovative deployment and recovery procedure GEOSTAR uses was derived from the "two-module" concept successfully applied by NASA in the Apollo and space shuttle missions, where one module performs tasks for the other, including deployment, switching on and off, performing checks and recovery. The observatory communication system, which takes advantage of satellite telemetry, and the simultaneous acquisition of a set of various measurements with a unique time reference make GEOSTAR the first fundamental element of a multiparameter ocean network. GEOSTAR's first scientific and technological mission, which took place in the summer of 1998 in the Adriatic Sea, verified the performance and reliability of the system. The mission was a success. providing 440 hours of continuous seismic magnetic and oceanographic data. Thje second phase of the mission, which was funded by the EC for 2 million (US dollars), will carry equipment for chemical, biological and isotopic analyses not used in the first phase, which will broaden the data collection effort.Published45, 48-492.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomariniN/A or not JCRreserve

    MABEL: a Multidisciplinary Benthic Laboratory for Deep Sea, Long-Term Monitoring in the Antarctic

    Get PDF
    Multidisciplinary Benthic Laboratory for Deep Sea, Long-Term Monitoring in the AntarcticPublished115-1181.8. Osservazioni di geofisica ambientaleope

    A comprehensive multiparametric and multilayer approach to study the preparation phase of large earthquakes from ground to space: The case study of the June 15 2019, M7.2 Kermadec Islands (New Zealand) earthquake

    Get PDF
    This work deals with a comprehensive multiparametric and multilayer approach to study earthquake-related processes that occur during the preparation phase of a large earthquake. As a case study, the paper investigates the M7.2 Kermadec Islands (New Zealand) large earthquake that occurred on June 15, 2019 as the result of shallow reverse faulting within the Tonga-Kermadec subduction zone. The analyses focused on seismic (earthquake catalogs), atmospheric (climatological archives) and ionospheric data from ground to space (mainly satellite) in order to disclose the possible Lithosphere-Atmosphere-Ionosphere Coupling (LAIC). The ionospheric investigations analysed and compared the Global Navigation Satellite System (GNSS) receiver network with in-situ observations from space thanks to both the European Space Agency (ESA) Swarm constellation and the China National Space Administration (CNSA in partnership with Italian Space Agency, ASI) satellite dedicated to search for possible ionospheric disturbances before medium-large earthquakes, i.e. the China Seismo-Electromagnetic Satellite (CSES-01). An interesting comparison is made with another subsequent earthquake with comparable magnitude (M7.1) that occurred in Ridgecrest, California (USA) on 6 July of the same year but in a different tectonic context. Both earthquakes showed anomalies in several parameters (e.g. aerosol, skin temperature and some ionospheric quantities) that appeared at almost the same times before each earthquake occurrence, evidencing a chain of processes that collectively point to the moment of the corresponding mainshock. In both cases, it is demonstrated that a comprehensive multiparametric and multilayer analysis is fundamental to better understand the LAIC in the occasion of complex phenomena such as earthquakes.We would like to thank Sodankylä Geophysical Observatory for providing us with search coil magnetometer spectrograms; CSNA and CEA for providing CSES data; ESA for providing Swarm satellite data and INTERMAGNET for providing the magnetic data from ground observatories. We also thank ISPRA for providing tidegauge data used in this article. Thank for the academic editor and reviewers for improving our manuscript with their comments. Finally, a personal thank you to Gaetano De Luca for sharing his seismological experience in the review phase of the paper.Peer reviewe
    corecore