101 research outputs found

    Transplant of GABAergic Precursors Restores Hippocampal Inhibitory Function in a Mouse Model of Seizure Susceptibility

    Get PDF
    Defects in GABAergic function can cause epilepsy. in the last years, cell-based therapies have attempted to correct these defects with disparate success on animal models of epilepsy. Recently, we demonstrated that medial ganglionic eminence (MGE)-derived cells grafted into the neonatal normal brain migrate and differentiate into functional mature GABAergic interneurons. These cells are able to modulate the local level of GABA-mediated synaptic inhibition, which suggests their suitability for cell-based therapies. However, it is unclear whether they can integrate in the host circuitry and rescue the loss of inhibition in pathological conditions. Thus, as proof of principle, we grafted MGE-derived cells into a mouse model of seizure susceptibility caused by specific elimination of GABAergic interneuron subpopulations in the mouse hippocampus after injection of the neurotoxic saporin conjugated to substance P (SSP-Sap). This ablation was associated with significant decrease in inhibitory postsynaptic currents (IPSC) on CA1 pyramidal cells and increased seizure susceptibility induced by pentylenetetrazol (PTZ). Grafting of GFP(+) MGE-derived cells in SSP-Sap-treated mice repopulates the hippocampal ablated zone with cells expressing molecular markers of mature interneurons. Interestingly, IPSC kinetics on CA1 pyramidal cells of ablated hippocampus significantly increased after transplantation, reaching levels similar to the normal mice. More importantly, this was associated with reduction in seizure severity and decrease in postseizure mortality induced by PTZ. Our data show that MGE-derived cells fulfill most of the requirements for an appropriate cell-based therapy, and indicate their suitability for neurological conditions where a modulation of synaptic inhibition is needed, such as epilepsy.Spanish Ministry of Science and InnovationCIPFCarlos III Institute (Spanish Ministry of Science and Innovation)Generalitat ValencianaAndalusian Ctr Mol Biol & Regenerat Med CABIMER, Dept Cell Therapy & Regenerat Med, Seville, SpainCIPF, Valencia, SpainUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilSpanish Ministry of Science and Innovation: SAF 07/61880Spanish Ministry of Science and Innovation: FIS 07/0079Web of Scienc

    Modeling epileptogenesis and temporal lobe epilepsy in a non-human primate

    Get PDF
    Here we describe a new non-human primate model of temporal lobe epilepsy (TLE) to better investigate the cause/effect relationships of human TLE. Status epilepticus (SE) was induced in adult marmosets by pilocarpine injection (250 mg/kg; i.p.). The animals were divided in 2 groups: acute (8 h post-SE) and chronic (3 and 5 months post-SE). To manage the severity of SE, animals received diazepam 5 min after the SE onset (acute group: 2.5 or 1.25 mg/kg; i.p.; chronic group/; 1.25 mg/kg; i.p). All animals were monitored by video and electrocorticography to assess SE and subsequent spontaneous recurrent seizures (SRS). To evaluate brain injury produced by SE or SRS we used argyrophil III, Nissl and neo-Timm staining techniques. Magnetic resonance image was also performed in the chronic group. We observed that pilocarpine was able to induce SE followed by SRS after a variable period of time. Prolonged SE episodes were associated with brain damage, mostly confined to the hippocampus and limbic structures. Similar to human TLE, anatomical disruption of dentate gyrus was observed after SRS. Our data suggest that pilocarpine marmoset model of epilepsy has great resemblance to human TLE, and could provide new tools to further evaluate the subtle changes associated with human epilepsy.FAPESPCNP

    Short-Term Withdrawal of Mitogens Prior to Plating Increases Neuronal Differentiation of Human Neural Precursor Cells

    Get PDF
    Background: Human neural precursor cells (hNPC) are candidates for neural transplantation in a wide range of neurological disorders. Recently, much work has been done to determine how the environment for NPC culture in vitro may alter their plasticity. Epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) are used to expand NPC; however, it is not clear if continuous exposure to mitogens may abrogate their subsequent differentiation. Here we evaluated if short-term removal of FGF-2 and EGF prior to plating may improve hNPC differentiation into neurons.Principal Findings: We demonstrate that culture of neurospheres in suspension for 2 weeks without EGF-FGF-2 significantly increases neuronal differentiation and neurite extension when compared to cells cultured using standard protocols. in this condition, neurons were preferentially located in the core of the neurospheres instead of the shell. Moreover, after plating, neurons presented radial rather than randomly oriented and longer processes than controls, comprised mostly by neurons with short processes. These changes were followed by alterations in the expression of genes related to cell survival.Conclusions: These results show that EGF and FGF-2 removal affects NPC fate and plasticity. Taking into account that a three dimensional structure is essential for NPC differentiation, here we evaluated, for the first time, the effects of growth factors removal in whole neurospheres rather than in plated cell culture.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Institutos do Milenio de Bioengenharia TecidualUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, São Paulo, BrazilUniv Fed Rio de Janeiro, Inst Ciencias Biomed, BR-21941 Rio de Janeiro, BrazilUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, São Paulo, BrazilFAPESP: fellowCNPq: fellowWeb of Scienc

    Chemically-Induced RAT Mesenchymal Stem Cells Adopt Molecular Properties of Neuronal-Like Cells but Do Not Have Basic Neuronal Functional Properties

    Get PDF
    Induction of adult rat bone marrow mesenchymal stem cells (MSC) by means of chemical compounds (β-mercaptoethanol, dimethyl sulfoxide and butylated hydroxyanizole) has been proposed to lead to neuronal transdifferentiation, and this protocol has been broadly used by several laboratories worldwide. Only a few hours of MSC chemical induction using this protocol is sufficient for the acquisition of neuronal-like morphology and neuronal protein expression. However, given that cell death is abundant, we hypothesize that, rather than true neuronal differentiation, this particular protocol leads to cellular toxic effects. We confirm that the induced cells with neuronal-like morphology positively stained for NF-200, S100, β-tubulin III, NSE and MAP-2 proteins. However, the morphological and molecular changes after chemical induction are also associated with an increase in the apoptosis of over 50% of the plated cells after 24 h. Moreover, increased intracellular cysteine after treatment indicates an impairment of redox circuitry during chemical induction, and in vitro electrophysiological recordings (patch-clamp) of the chemically induced MSC did not indicate neuronal properties as these cells do not exhibit Na+ or K+ currents and do not fire action potentials. Our findings suggest that a disruption of redox circuitry plays an important role in this specific chemical induction protocol, which might result in cytoskeletal alterations and loss of functional ion-gated channels followed by cell death. Despite the neuronal-like morphology and neural protein expression, induced rat bone marrow MSC do not have basic functional neuronal properties, although it is still plausible that other methods of induction and/or sources of MSC can achieve a successful neuronal differentiation in vitro
    • …
    corecore