599 research outputs found

    Fractal universe and quantum gravity

    Full text link
    We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.Comment: 4 pages. v2: typos corrected; v3: discussion improved, intuitive introduction added, matches the published versio

    Atrioventricular canal defect and genetic syndromes: the unifying role of sonic hedgehog

    Get PDF
    The atrioventricular canal defect (AVCD) is a congenital heart defect (CHD) frequently associated with extracardiac anomalies (75%). Previous observations from a personal series of patients with AVCD and "polydactyly syndromes" showed that the distinct morphology and combination of AVCD features in some of these syndromes is reminiscent of the cardiac phenotype found in heterotaxy, a malformation complex previously associated with functional cilia abnormalities and aberrant Hedgehog (Hh) signaling. Hh signaling coordinates multiple aspects of left-right lateralization and cardiovascular growth. Being active at the venous pole the secondary heart field (SHF) is essential for normal development of dorsal mesenchymal protrusion and AVCD formation and septation. Experimental data show that perturbations of different components of the Hh pathway can lead to developmental errors presenting with partially overlapping manifestations and AVCD as a common denominator. We review the potential role of Hh signaling in the pathogenesis of AVCD in different genetic disorders. AVCD can be viewed as part of a "developmental field," according to the concept that malformations can be due to defects in signal transduction cascades or pathways, as morphogenetic units which may be altered by Mendelian mutations, aneuploidies, and environmental causes

    Degeneracy of consistency equations in braneworld inflation

    Full text link
    In a Randall-Sundrum type II inflationary scenario we compute perturbation amplitudes and spectral indices up to next-to-lowest order in the slow-roll parameters, starting from the well-known lowest-order result for a de Sitter brane. Using two different prescriptions for the tensor amplitude, we show that the braneworld consistency equations are not degenerate with respect to the standard relations and we explore their observational consequences. It is then shown that, while the degeneracy between high- and low-energy regimes can come from suitable values of the cosmological observables, exact functional matching between consistency expressions is plausibly discarded. This result is then extended to the Gauss-Bonnet case.Comment: 16 pages, 3 figures. v3: major revision. Changed title, updated references, rearranged material, new prescription for the tensor spectrum, new figures, extended and more robust conclusion

    Path Integrals and Alternative Effective Dynamics in Loop Quantum Cosmology

    Full text link
    The alternative dynamics of loop quantum cosmology is examined by the path integral formulation. We consider the spatially flat FRW models with a massless scalar field, where the alternative quantization inherit more features from full loop quantum gravity. The path integrals can be formulated in both timeless and deparameterized frameworks. It turns out that the effective Hamiltonians derived from the two different viewpoints are equivalent to each other. Moreover, the first-order modified Friedmann equations are derived and predict quantum bounces for contracting universe, which coincide with those obtained in canonical theory.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:1102.475

    Cosmological tachyon from cubic string field theory

    Full text link
    The classical dynamics of the tachyon scalar field of cubic string field theory is considered on a cosmological background. Starting from a nonlocal action with arbitrary tachyon potential, which encodes the bosonic and several supersymmetric cases, we study the equations of motion in the Hamilton-Jacobi formalism and with a generalized Friedmann equation, appliable in braneworld or modified gravity models. The cases of cubic (bosonic) and quartic (supersymmetric) tachyon potential in general relativity are automatically included. We comment the validity of the slow-roll approximation, the stability of the cosmological perturbations, and the relation between this tachyon and the Dirac-Born-Infeld one.Comment: 20 pages JHEP style, 1 figure; v4: misprints corrected, matches the published versio

    Slow-roll corrections to inflaton fluctuations on a brane

    Get PDF
    Quantum fluctuations of an inflaton field, slow-rolling during inflation are coupled to metric fluctuations. In conventional four dimensional cosmology one can calculate the effect of scalar metric perturbations as slow-roll corrections to the evolution of a massless free field in de Sitter spacetime. This gives the well-known first-order corrections to the field perturbations after horizon-exit. If inflaton fluctuations on a four dimensional brane embedded in a five dimensional bulk spacetime are studied to first-order in slow-roll then we recover the usual conserved curvature perturbation on super-horizon scales. But on small scales, at high energies, we find that the coupling to the bulk metric perturbations cannot be neglected, leading to a modified amplitude of vacuum oscillations on small scales. This is a large effect which casts doubt on the reliability of the usual calculation of inflaton fluctuations on the brane neglecting their gravitational coupling.Comment: 18 pages, 4 figure

    Slow-roll corrections to inflaton fluctuations on a brane

    Get PDF
    Quantum fluctuations of an inflaton field, slow-rolling during inflation are coupled to metric fluctuations. In conventional four dimensional cosmology one can calculate the effect of scalar metric perturbations as slow-roll corrections to the evolution of a massless free field in de Sitter spacetime. This gives the well-known first-order corrections to the field perturbations after horizon-exit. If inflaton fluctuations on a four dimensional brane embedded in a five dimensional bulk spacetime are studied to first-order in slow-roll then we recover the usual conserved curvature perturbation on super-horizon scales. But on small scales, at high energies, we find that the coupling to the bulk metric perturbations cannot be neglected, leading to a modified amplitude of vacuum oscillations on small scales. This is a large effect which casts doubt on the reliability of the usual calculation of inflaton fluctuations on the brane neglecting their gravitational coupling.Comment: 18 pages, 4 figure

    Aspects of Quantum Gravity in Cosmology

    Get PDF
    We review some aspects of quantum gravity in the context of cosmology. In particular, we focus on models with a phenomenology accessible to current and near-future observations, as the early Universe might be our only chance to peep through the quantum gravity realm.Comment: 15 pages, 1 figure. Invited review for Modern Physics Letter A. Version 2: minor typos corrected, few references adde

    f(R)f(R) theory and geometric origin of the dark sector in Horava-Lifshitz gravity

    Full text link
    Inclusion of f(R)f(R) term in the action of Horava-Lifshitz quantum gravity with projectability but without detailed balance condition is investigated, where RR denotes the 3-spatial dimensional Ricci scalar. Conditions for the spin-0 graviton to be free of ghosts and instability are studied. The requirement that the theory reduce to general relativity in the IR makes the scalar mode unstable in the Minkowski background but stable in the de Sitter. It is remarkable that the dark sector, dark matter and dark energy, of the universe has a naturally geometric origin in such a setup. Bouncing universes can also be constructed. Scalar perturbations in the FRW backgrounds with non-zero curvature are presented.Comment: Mod. Phys. Lett. A26, 387-398 (2011

    Cosmological constraints from Gauss-Bonnet braneworld with large-field potentials

    Full text link
    We calculate the spectral index and tensor-to-scalar ratio for patch inflation defined by H2≈βq2VqH^2\approx \beta^2_q V^q and ϕ˙≈−V′/3H\dot{\phi}\approx -V'/3H, using the slow-roll expansion. The patch cosmology arisen from the Gauss-Bonnet braneworld consists of Gauss-Bonnet (GB), Randall-Sundrum (RS), and 4D general relativistic (GR) cosmological models. In this work, we choose large-field potentials of V=V0ϕpV=V_0\phi^p to compare with the observational data. Since second-order corrections are rather small in the slow-roll limit, the leading-order calculation is sufficient to compare with the data. Finally, we show that it is easier to discriminate between quadratic potential and quartic potential in the GB cosmological model rather than the GR or RS cosmological models.Comment: 13 pages, title changed, version to appear in JCA
    • …
    corecore