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The atrioventricular canal defect (AVCD) is a congenital heart defect (CHD) frequently associated with 
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extracardiac anomalies (75%). Previous observations from a personal series of patients with AVCD and 

“polydactyly syndromes” demonstrated that the distinct morphology and combination of AVCD 

features in some of these syndromes is reminiscent of the cardiac phenotype found in heterotaxy, a 

malformation complex previously associated with functional cilia abnormalities and aberrant Hedgehog 

(Hh) signaling. Hh signaling coordinates multiple aspects of left-right lateralization and cardiovascular 

growth. Being active at the venous pole of the Secondary Heart Field (SHF), is essential for normal 

development of dorsal-mesenchymal protrusion and AVCD formation and septation. Experimental data 

show that perturbations of different components of the Hh pathway can lead to developmental errors 

presenting with partially overlapping manifestations and AVCD as a common denominator. We review 

the potential role of Hh signaling in the pathogenesis of AVCD in different genetic disorders. AVCD 

can be viewed as part of a “developmental field”, according to the concept that malformations can be 

due to defects in signal transduction cascades or pathways, as morphogenetic units which may be 

altereted by Mendelian mutations, aneuploidies, environmental causes. 
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1  INTRODUCTION 

This article reviews the potential role of Hedgehog signaling in the pathogenesis of atrioventricular 
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canal defect (AVCD) in different genetic disorders, based on recent experimental findings which show 

that dorsal mesocardial protrusion (DMP) development requires cilia-based Hedgehog (Hh) signaling, 

and that cilia are structurally present in the secondary heart field (SHF).1,2 Previous observations from a 

personal series of patients with AVCD and “polydactyly syndromes” demonstrated that the distinct 

morphology and combination of AVCD features in some of these syndromes is reminiscent of the 

cardiac phenotype found in heterotaxy, a malformation complex previously associated with functional 

cilia abnormalities and aberrant Hedgehog (Hh) signaling. Recent experimental data provide new 

insights into the relationship between Hh signaling and AVCD in other genetic conditions, including 

Noonan and Down syndromes. 

 

2.1  Atrioventricular canal defect 

AVCD, also known as endocardial cushion defect or atrioventricular septal defect, is a common 

congenital heart defect (CHD), affecting 3.5/10.000 live births, and accounting for 7.4% of all CHDs.3 

AVCD is characterized by a spectrum of anomalies of the atrioventricular valves, and atrial and 

ventricular septa. In the complete form, a single common atrioventricular valve occurs with an atrial 

septal defect (ostium primum), and a confluent posterior ventricular septal defect. In the partial form, 

two separate right and left atrioventricular valves are found with a cleft of the mitral valve, an atrial 

septal defect (ostium primum), and no ventricular septal communication.4 

From an embryological point of view, AVCD, with absent or incomplete fusion of ventral 

(antero-superior) and dorsal (postero-inferior) atrioventricular cushions, was traditionally considered  

caused by a primary intracardiac mechanism consisting in the maldevelopment of endocardial cushions 

in relation to defects of extracellular matrix.5-7 Some recent  studies, however, have shown that 

perturbation of extracardiac tissue, known as DMP, represents a major determinant of AVCD.8-10 This 

population of extracardiac mesenchymal cells was reported in 1880 by Wilhelm His as spina vestibuli. 
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These cells arise from the posterior segment of the SHF in the splanchnic mesoderm, grow towards the 

atrial surface of the primitive AVCD, in particular, towards the inferior dorsal endocardial cushion, to 

close the primary atrial foramen and form the AV junction.11,12 

AVCD is a CHD frequently associated with extracardiac anomalies (75%),3 familiar as the 

distinctive CHD in Down syndrome.13 Indeed, in large series of individuals with AVCD, extracardiac 

anomalies were present in about 75% of cases,3,14 of whom, 45% had Down syndrome. Many patients 

with AVCD occur in syndromes of known etiologies (chromosome, gene). The second specific 

association is heterotaxy, occurring in 15% of patients with AVCD. Heterotaxy is also known as  

Ivemark syndrome or atrial isomerism or situs ambiguous with splenic anomalies.4 The 15% of the 

cases of AVCD are affected by other different genetic syndromes. Non-syndromic conditions are 

observed in the remaining 25% of AVCD individuals.14 The morphology and combination of CHDs in 

several syndromes with AVCD as reported in the 1990s in personal observations is similar to what seen 

in heterotaxy.15-19   

 

2.2  Ciliary function and the Hedgehog signaling pathway  

The cilium is a multifunctional organelle which projects from the cell surface of many different cells. 

Cilia are conserved in a wide variety of eukaryotic species throughout evolution. Studies in the last 15 

years have shown that dysfunctional cilia can lead to several human genetic diseases with overlapping 

phenotypes, the so called "ciliopathies".20,21 The affected tissues are as diverse as the different cell 

types that carry cilia. The ciliary membranes harbor receptors for crucial signaling cascades, including 

Hh  signaling.22,23 Disruption of cilium function in a single tissue may result in a tissue-restricted 

phenotype, while disruption of cilium function at early embryonic stages, and perturbation of proper 

Hh signaling, is generally associated to more severe disorders, and may not be compatible with 

embryonic development. 
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Molecular advances have shown that several disease genes implicated in syndromes with 

AVCD encode proteins that participate in the ciliary function, and that dysfunction of the nodal cilium 

results in left-right axis defects in vertebrates.24,25 Ciliary dysfunction and abnormal localization and/or 

function of proteins participating in Hh signaling have been recognized in syndromes with AVCD, 

which is not surprising since the relevant role of Hh signaling in coordinating multiple aspects of left-

right lateralization and cardiovascular growth. In addition, Sonic Hedgehog knock-out mice show 

CHDs in the setting of heterotaxy and left pulmonary isomerism.26-28  

Genetic defects of ciliary function are known as ciliopathies, and include short rib-polydactyly, 

Joubert, Oral-Facial.-Digital, Bardet-Biedl, and Meckel syndromes. Hh signaling is an essential 

developmental pathway coordinated at the primary cilium.29  In vertebrates, three Hh signaling 

molecules, Sonic hedgehog (SHH), Indian hedgehog (IHH), and Desert hedgehog (DHH). Their effects 

are mediated by three different transcription factors, glioma-associated oncogenes 1 to 3 (GLI1-3). The 

binding of Hh molecules to their receptors, Patched 1 and 2 (PTCH1-2), results in the internalization 

and lysosomal degradation of the PTCH1/SHH complexes and in the release of the inhibition on 

smoothened (SMOH). SMOH translocates to cilia and functions as the activator of the pathway 

promoting transcriptional activation of the GLI proteins.30-33  

Experimental studies performed in mice have shown that cilia are required for both left/right 

body axis determination and SHF Hh signaling.2 Dnah11 mutants, affecting ciliary motility, do not 

disrupt SHF Hh signaling, but cause AVCD, concurrently with heterotaxy. Differently, Mks1 mutants 

create dysfunction in the structure of primary cilium, disrupt SHF Hh signaling, and cause AVCD 

without heterotaxy. In summary, normal structure of primary cilia is required for SHF Hh signaling: 

both cilia structure and motility can generate distinct cardiac phenotypes. 

It has been found that perturbations of the different components of SHH pathway are associated 

with different developmental errors in patients manifesting partially overlapping features.19,34 In the 
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following paragraphs, we will review the role of Hh pathway and ciliary dysfunction in the 

development of AVCD in some genetic disorders.  

 

2.3   Heterotaxy 

Heterotaxy is characterized by the combination of the abnormal arrangement of the abdominal and 

thoracic organs, usually with complex CHDs, including AVCD, common atrium, anomalous systemic 

and pulmonary venous drainage, persistent left superior vena cava with unroofed coronary sinus, and 

conotruncal defects.4,35,36 Heterotaxy includes patients with situs inversus and situs ambigous with 

“asplenia” (right isomerism phenotype) and “polysplenia” (left isomerism phenotype). Patients with 

asplenia or polysplenia may be associated with cardiac and extracardiac malformations different from 

each other.37- 43 Patients with the “asplenia phenotype” (right isomerism of lungs and atrial appendages) 

display right pulmonary and right atrial appendage isomerism and more severe cardiac defects,37,39 such 

as total anomalous pulmonary venous drainage,38,40,44 complete AVCD,38,40,45 and pulmonary stenosis 

or  atresia.38,40,46 In contrast, the “polysplenia phenotype” is characterized by left isomerism of lungs 

and atrial appendages, in general with less severe CHD,38,40 such as partial AVCD, interruption of the 

inferior vena cava,37,38,40,41,44 and systemic outflow tract obstruction,47-50 which are rare in asplenia.51  

 

2.4  Ciliopathies with postaxial polydactyly  

This group of disorders includes several genetically heterogeneous conditions sharing AVCD and 

postaxial polydactyly. AVCD, particularly in association with common atrium, has been reported in 

several syndromes with postaxial polydactyly, including Ellis-van Creveld syndrome and other “short 

rib-polydactlyly” (SRP) disorders, oral-facial-digital syndromes, Bardet-Biedl syndrome, and Smith-

Lemli-Opitz syndrome.15,34 The original clinical observation of cardiac anatomical similarities between 

patients with polydactyly syndromes and heterotaxy and polysplenia15 has been corroborated by 
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experimental studies in transgenic mice. The suggested involvement of the SHH pathway in syndromes 

with postaxial polydactyly and heterotaxy has been confirmed by the detection of ciliary dysfunction in 

several disorders with polydactyly. Ciliary dysfunction through abnormal processing of the Hh proteins 

has been documented in Ellis-van Creveld and other short-rib polydactyly, Smith-Lemli-Opitz, and 

oral-facial-digital type IV syndromes,19,52,53 while ciliary function directly is involved in Bardet-Biedl, 

oral-facial-digital I and VI syndromes.54-57  

2.4.1   Ellis-van Creveld syndromes 

The Ellis-van Creveld syndrome is a chondroectodermal dysplasia, characterized by skeletal and 

craniofacial abnormalities associated with polydacyly, dysplastic teeth and nails.58 Approximately two 

thirds of the affected individuals also have CHD, more commonly AVCD associated with common 

atrium and/or systemic and pulmonary venous abnormalities.14,15,17,18,59-61 AVCD is rarely associated 

with common atrium in the non-syndromic patients, but relatively common in Ellis-van Creveld 

syndrome15 and in heterotaxy.38  

Ellis-van Creveld syndrome is due to mutations in EVC and EVC2 genes, and both genes are 

required for normal transcriptional activation of IHH signalling.52,58 Specifically, EVC and EVC2 act as 

positive modulators of IHH signaling, located at the proximal end of the primary cilium and expressing 

normally in the growth plates and chondrocyte cilia.62 In the growth plates of long bones, IHH is 

secreted by the prehypertrophic chondrocytes, generating a gradient of signal that coordinates 

chondrocyte differentiation, chondrocyte proliferation and perichondrial development.63 The bulk of 

the Ellis-van Creveld complex localizes to the proximal end of cilia, just above the transition zone, and 

physically interacts with the main activator of the pathway, SMOH, retaining this protein to that section 

of the cilium.64 Experiments in Evc knock-out mice have shown that loss of  Evc and Evc2 function 

affect  Ihh signaling, and expression levels of Ihh downstream targets (Ptch1, Gli1, and Pthrp). As a 

result, the cilia-mediated response to Hh ligands is diminished.65 Recently, a proportion of patients with 
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clinical diagnosis of Ellis-van Creveld syndrome has been linked to mutations in WDR35, which 

encodes a retrograde intraflagellar transport (IFT) protein that is required for the recruitment of the 

EVC-EVC2-SMOH complex to the cilium.66  Experiments in WDR35-/- fibroblasts have shown that the 

mutations associated with Ellis-van Creveld syndrome lead to Hh signaling defects similar to what 

observed in cells with EVC or EVC2 loss of function.67 In addition, mouse models for the WDR35 gene 

mutations result in congenital abnormalities usually associated with defects in the Hh signaling 

pathway.67 More recently, biallelic DYNC2LI1 variants have been identified as a novel molecular event 

underlying Ellis-van Creveld syndrome in small number of families.68,69 DYNC2LI1 codes for a 

component of the intraflaggelar transport-related dynein-2 complex, a machinery mediating retrograde 

traffic along the cilium, and whose function is required for cilium assembly and function, including 

signal transduction, and is functionally related to WDR35.  

2.4.2   Oral-Facial-Digital syndromes 

The oral-facial-digital (OFD) syndromes include a group of conditions (13 clinical subtypes), in 

association with malformations of the face, oral cavity, and digits (polysyndatyly).70 CHD is not 

common in this group, but AVCD has been detected in patients with OFD syndrome type II71 and type 

VI,72 and common atrium in OFD syndrome type I.73   

OFD I can be differentiate from other subtypes by X-linked dominant inheritance and mutations 

of OFD1 gene, encoding for a centrosomal protein involved in ciliary function.74 Interestingly, it has 

been demonstrated that knockout male mouse embryos lacking this gene (Ofd1) have failure of left-

right axis specification with abnormal cardiac tube retaining a midline position or reversal of the heart 

loop.55 Ultrastructural analysis has shown lack of cilia in the embryonic node, supporting a specific role 

for Ofd1 protein in cilium assembly through basal body dysfunction. OFD type II has been recently 

linked to the planar cell polarity ciliogenesis WDPCP gene,75 and truncating TCTN3 mutations, a gene 

implicated in transduction of SHH signalling, have been found in patients with atypical forms of OFD 
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type IV.53 

2.4.3   Joubert syndrome 

Joubert syndrome is a group of genetically heterogeneous conditions classified among ciliopathies, 

characterized by multiorgan involvement (retinal, renal, hepatic and skeletal) and the pathognomonic 

neuroradiological “molar tooth sign”. Joubert syndromes can be associated also with CHDs, including 

left ventricular obstructions, alone or associated with AVCD.15,76  

2.4.4   Smith-Lemli-Opitz syndrome 

Smith-Lemli-Opitz syndrome  (SLOS) is an autosomal recessive syndrome characterized by 

developmental delay, growth retardation, microcephaly, distinct facial anomalies, cleft palate, 

hypospadias, postaxial polydactyly, and CHD.77  SLOS is due to an inborn error of cholesterol 

metabolism with deficiency of the 7-dehydrocholesterol-7 reductase  (DHCR7) activity resulting in 

reduced plasma and tissue cholesterol levels and elevated 7-dehydrocholesterol concentrations  due to 

inactivating mutations in the DHCR7 gene.78  

CHD occurs in half of the patients with RSH/SLOS.79 Septal defects and AVCD are the most 

common CHDs in SLOS, and AVCD is often associated with anomalous pulmonary venous return, the 

latter is also a cardiac manifestation of heterotaxy with asplenia.79  

Cholesterol plays a critical role in formation of the normally active hedgehog proteins.80 

Abnormal processing of Hedgehog proteins secondary to abnormal cholesterol levels seems to have a 

role in the development of SLO syndrome malformations.19,80  

 

2.5  Ciliopathies without polydactyly 

2.5.1  VACTERL Association 

VACTERL is a non-random association of congenital anomalies, including vertebral defects (V), anal 

atresia (A), esophageal atresia (TE), radial and renal dysplasia (R) and limb anomalies (L).81 This 
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spectrum was broadened to include diverse CHDs which are noted in 50-80% of patients, and include 

septaland and conotruncal defects.82 In addition, laterality defects have been observed, and include 

dextrocardia, heterotaxy, AVCD, and transposition of the great arteries.14,83  

The causal mechanism underlying VACTERL association has not been established. Clinical 

observations and molecular studies focused on Shh signaling in mice strongly suggest that the 

VACTERL phenotype observed in humans could be caused by a defective SHH signaling.84 In fact, Gli 

mutant mice display a spectrum of defects resembling the human VACTERL association. As 

anticipated, GLI genes encode transcription factors mediating SHH signal transduction. In addition, 

VACTERL with hydrocephalus (VACTERL-H) has been associated to a hypomorphic mutation of the 

intraflagellar transport protein 172 (Ift172), in mice.85 Ift172 is required for ciliogenesis and Hh 

signaling. Thus, the IFT defect could impair the localization of Hh signaling components to the distal 

ciliary axoneme. CHDs in avc1 mutant mice include AVCD with common atrium.85 Some studies have 

implicated the FOX transcription factor gene cluster in VACTERL association.86 Haploinsufficiency of 

Foxf1 gene in mice can be associated with a variable phenotype that includes lung immaturity and 

hypoplasia, fusion of right lung lobes, narrowing of esophagus and trachea, esophageal atresia and 

tracheo-esophageal fistula.87 The above mechanism does involve the Hh signaling pathway, since it has 

been demonstrated that exogenous Shh activates transcription of Foxf1 in the developing lung.87  

2.5.2  Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins 

In humans, FOXF1 gene mutations cause alveolar capillary dysplasia with misaligned pulmonary 

veins.88 Alveolar capillary dysplasia, usually associated with misalignment of the pulmonary vessels, 

is a congenital pulmonary vascular abnormality characterized histologically by a lack of formation and 

ingrowth of alveolar capillaries leading to a failing air–blood barrier. In about 10% of cases, alveolar 

capillary dysplasia is associated with CHD, in particular partial or complete AVCD and various 

degrees of left heart obstruction.89 AVCD in these cases may consist in a small left ventricle with or 
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without aortic coarctation.  

The FOXF1 gene is activated by Shh signaling and, on a specific genetic background, its 

haploinsufficiency results in lung and foregut malformations similar to those observed in Shh and Gli 

mutants.87 

2.5.3   Noonan syndrome and related disorders (RASopathies) 

The term RASopathies, also known as the Noonan Syndrome-spectrum disorder (i.e., LEOPARD 

syndrome or “Noonan syndrome-Multiple Lentigines”, cardio-facio-cutaneous syndrome, Costello 

syndrome, Mazzanti syndrome and others), are characterized by distinctive facial features, CHD, 

growth retardation, hematological, ectodermal and skeletal defects, and variable neuropsychologic 

impairment.90 CHD occurs in about 65-85% of cases, depending on the mutated genes. AVCD, usually 

a partial form, may occur in Noonan syndrome and in LEOPARD syndrome/Noonan syndrome-

Multiple Lentigines,91-93 and may be associated with systemic obstructions including subaortic stenosis 

or aortic coarctation.91,93 Structural abnormalities causing congenital subaortic stenosis include 

accessory fibrous tissue and/or anomalous insertion of  mitral valve and anomalous papillary muscle of 

left ventricle.94  

Noonan syndrome and related disorders are caused by mutations in genes encoding proteins 

with a role in the RAS/MAP kinase (MAPK),  signaling pathway.90,95 PTPN11 gene mutations, which 

underlie Noonan and LEOPARD/Noonan syndrome –Multiple Lentigines syndromes, have been 

detected in patients with AVCD associated with RASopathies.93 It has been established that germline 

mildly activating mutations in PTPN11 cause Noonan syndrome, whereas more activating mutations in 

the same gene transmitted as somatic events cause childhood myeloproliferative disease and 

leukemias.96  

Strikingly, heterozygous inactivating mutations of PTPN11 gene have been associated in 

patients with metachondromatosis, a rare autosomal dominant tumor syndrome characterized by the 
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predisposition of forming multiple exostoses and enchondromas, joint destruction and bony 

deformities.97,98 Of note, chondroid neoplasms result from decreased ERK pathway activation, 

increased Indian hedgehog (IHH) and parathyroid hormone-related protein (PTHRP), and excessive 

proliferation. Normal SHP2/PTPN11 function seems to act as IHH suppressor, and experiments in mice 

have documented decreased IHH levels in Noonan syndrome caused by germline activating mutations 

in PTPN11 gene.99 

 

2.5.4  Down syndrome 

Down syndrome, which is caused in most cases by complete trisomy of 21, is characterized by 

developmental delay, facial anomalies, and gastrointestinal malformations. CHDs occur in about 40-

50% of these patients, typically complete AVCD.100 Children with Down syndrome show a “simple 

type” of AVCD, usually complete, rarely associated with other CHDs, with the notable exception of 

tetralogy of Fallot.101 In fact, associated CHDs, in particular left-sided obstructions, are significantly 

more rare in patients with Down syndrome and AVCD in comparison of patients with AVCD and 

normal chromosomes.13,49,100,102  

The molecular relationship between AVCD and Down syndrome is still unclear. A number of 

genes located in the CHD critical region on chromosome 21 have been causally related to AVCD, 

including DSCAM, COL6A1, COL6A2, and DSCR1,103-104 so as variants in genes mapping on other 

chromosomes including CRELD1, FBLN2, FRZB, and GATA5.105 Experimental studies, using mouse 

models of Down syndrome, consisting in crossing loss-of-function alleles of Creld1 or Hey2 genes 

onto the trisomic background, showed a significant increased frequency of CHD, suggesting an 

interaction between modifiers and trisomic genes.106 

Some recent observations in mouse models have pointed to a role of the Shh signaling pathway 

also in Down syndrome. Cerebral, skin, liver and intestine mice trisomic cells have shown a defective 
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mitogenic Shh activity with cell proliferation impairment due to a higher expression of Ptch1, a 

receptor normally repressing the Shh pathway.107 This suggests that PTCH-dependent inhibition of 

SHH signaling may underlie proliferation impairment in trisomic peripheral tissues leading to defective 

neuronal production in the Down syndrome brain.108 In addition, subcutaneous administration of the 

Shh pathway agonist SAG to trisomic Ts65Dn mice at birth resulted in an increased proliferation of 

granule cell precusors in the cerebellum.109  

 

2.5.5  Non-syndromic AVCD 

Non-syndromic AVCD can be a sporadic or display familial clustering. In this latter case, familial 

recurrence follows an autosomal dominant pattern of inheritance. Little is known about molecular basis 

of non-syndromic AVCD. The first chromosomal locus for isolated ACVD was assigned to 

chromosome 1p31-p21, and a second locus was mapped within the 3p25 critical region, with CRELD1 

as a putative candidate gene.110  Based on the association between AVCD and 8p deletion, GATA4 was 

also considered as a possible relevant gene, but thus far a pathogenic mutation was found only in a 

single patient.   

The gene most frequently associated with AVCD is CRELD1, and heterozygous mutations 

occur in 6% of non-syndromic partial AVCDs.110 In addition, some CRELD1 gene mutations have been 

implicated in AVCD present in Down syndrome patients.111 Gene interaction has been found also in the 

Ts65Dn model of Down syndrome mice, where the introduction of a null allele of Creld1 in 

theDs65Dn mouse was observed to increase the penetrance of CHDs. It was also found that 

overexpression of Jam2 gene was a necessary potentiator of the disomic genetic modifier Creld1.112 

Incomplete penetrance has been documented in families with AVCD, arguing that deleterious CRELD1 

mutations function as risk factors for AVCD, while can occur as benign variants in the general 

population. One CRELD1 mutation, c.985C>T (p.Arg329Cys has been reported as a recurrent 
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variant.111 A pathogenic link with ciliary dysfunction has been suspected also for CRELD1 gene.113 

Based on the model analysed by Burnicka-Turek et al.2 CRELD1 is not required for left/right 

determination, since Creld1 null mice do not manifest L/R abnormalities,114 suggesting that CRELD1 

mutations contribute to the cause of AVCD through disruption of SHF Hh signaling rather than cilia 

motility. In the same study, it was suggested that hypomorphic mutations of the genes contributing to 

primary cilia structure and signaling could contribute also to the development of non-syndromic 

AVCDs. 

 

2.6  Pathogenetic mechanism of AVCD: the role of Sonic Hedgehog 

Nonsyndromic AVCD is a CHD with genetic heterogeneity. It involves a progenitor and secondary 

fields, and is homologous to AVCD in related species who share corresponding structure due to descent 

with modification from a common ancestor.115,116 Tissue of extracardiac origin, from the posterior 

segment of the SHF (the so-called dorsal mesocardial protrusion (DMP) is recognized as a fundamental 

component of atrial and atrioventricular septation of the heart.8-10,117 Cells of the DMP growing towards 

the primary atrial septum fuse with the posteroinferior and anterosuperior atrioventricular cushions to 

close the primary atrial foramen and to form two separate atrioventricular valves.8,10-12 

In mice, defects of Shh signaling cause developmental anomalies of the DMP resulting in 

AVCD.1,12,118 Abnormal expression of Shh signaling in the DMP disrupts the proliferation of this 

structure, preventing the fusion of the atrioventricular cushions with the inferior margin of the septum 

primum.1,12 Additional experimental studies have shown that Shh null mouse heart can have 

AVCD.119,120 Nevertheless, the primary AVCD signal transduction cascade involves Hh 

parsimoniously since Hh is involved in the induction of other developmental fields, as neural and 

ocular holoprosencephaly, anterior-posterior limb axis and ventral somites.  
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Therefore, perturbation of the SHH pathway and its effect on the DMP, represent unifying 

pathogenic patterns, causing AVCD in many genetic disorders, including Down and Noonan 

syndromes. 

 

3  CONCLUSIONS 

Hh signaling coordinates multiple aspects of left-right lateralization and cardiovascular growth, and 

being active at venous pole of the SHF, it is essential for normal development of dorsal-mesenchymal 

protrusion and AVC formation and septation. Molecular studies have demonstrated that several genes 

responsible for syndromes with AVCD are causally involved in ciliary function and/or abnormal 

processing of proteins with role in Hh signaling. Perturbations of different components of the Hh 

pathway lead to several developmental errors presenting with partially overlapping manifestations and 

AVCD as a common denominator (Figure 1, Table 1).  

Similarly to that occurring for conotruncal heart defects in deletion 22q11.2 syndrome and 

branchial arch anomalies, AVCD should be considered as the cardiac manifestation linking ciliopathy 

syndromes.  AVCD could be part of a “developmental field”, accordingly to the concept that 

malformations can be due to defects in signal transduction cascades or pathways in developmental field 

defects.115,116 The single morphogenetic unit may be altereted by Mendelian mutations, aneuploidies, 

and environmental causes.  
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Legenda figure 

 

FIGURE 1. Different mechanisms altering Hedgeghog signaling pathway in syndromes associated 

with AVCD 
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eTABLE 1. Review of genes, mutation effects in Hedgehog pathway, cilia involvement, and cardiac defects in ciliopathies with AVCD  
 
Disease Gene Mutation 

effect on 
Hedgehog 
pathway 

Cilia 
involvement 

AVCD and 
laterality 
defects 

Left-sided 
obstructions 

Pulmonary 
venous 
abnormalities

Conotruncal  
defects 

Septal 
defects, 
other 

Ellis-van Creveld 
syndrome 

EVC  
EVC2 
WDR35 
DYNC2LI1 

Decrease of 
Ihh 

Proximal end of 
the primary 
cilium 

AVCD  (partial) 
with 
common atrium 
 
 

HLH, Ao Co, 
AS 

  ASD 
(ostium 
secundum) 

Oral-Facial-
Digital syndromes 

        

- OFD type I Ofd1 - Basal body of the 
primary cilia 

Situs inversus 
Common atrium

-    

- OFD type II WDPCP Involvement 
of Hedgehog 
pathway 

Basal body of the 
primary cilia 

AVCD (partial) 
with 
common atrium 

HLH,  Ao Co, 
AS 

   

- OFD type VI TMEM216 - Basal body of the 
primary cilia 

AVCD (partial) 
 

Ao Co, AS    

Joubert syndromes KIF7 
 
 
 
TMEM216 

Increased in 
activity of Shh 
pathway, 
through 
regulation of 
Gli 

Microtubule 
dynamics 
 
 
 
Basal body of the 
primary cilia 

AVCD (partial) 
 

AS, BAV    

Smith Lemli-
Opitz syndrome 

DHCR7 Abnormal 
processing of 
the Hedgehog 
proteins 
secondary to 
low 
cholesterol  

- AVCD 
(complete) with 
APVR 

 
 

APVR  VSD,  
ASD 
(ostium 
secundum) 
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A
cc

ep
te

d 
A

rti
cl

eKartagener 
syndrome 

Dyneins Not required 
for SHF 
Hedgehog 
signaling. 

Dynein arms, 
linking 
microtubules 
Cilia motility 

Situs inversus -    

VACTERL 
Association 

GLI3, 
FOXF1, 
IFT172  

Defective 
Sonic and 
Indian 
Hedgehog 
signaling 

Distal ciliary 
axoneme 

AVCD (partial) 
Dextrocardia 
Heterotaxy 
 
 

 APVR TOF, 
DORV 

VSD 
(subaortic), 
ASD 
(ostium 
secundum) 

Alveolar capillary 
dysplasia 

FOXF1 Activated by 
Sonic 
Hedgehog 
signalling 

- AVCD (partial) 
with left-sided 
obstructions 

-    

Noonan / 
RASopathies 

PTPN11 Decreased 
Indian 
Hedgehog 
levels 

- AVCD (partial) 
with Ao Co 

Ao Co   PVS, 
ASD 
(ostium 
secondum) 

Down syndrome Trisomy 
21 

Defective 
mitogenic 
Sonic 
Hedgehog 
activity 

- AVCD 
(complete) 
with/without 
TOF 

  TOF VSD 
(inlet), 
ASD 
(ostium 
secundum) 

Non-syndromic 
AVCD 

CRELD1 Disruption of 
Hedgehog 
signaling 

Primary cilium 
structure 

AVCD (partial, 
complete) 

-    

 
 
Abbreviations : Ao Co, aortic coarctation; APVR, anomalous pulmonary venous return; AS, aortic stenosis; ASD, atrial septal defect; AVCD, 
atrioventricular canal defect ; BAV, bicuspid aortic valve; DORV, double outlet right ventricle; HLH, hypoplastic left heart; Ihh : Indian Hedgehog; 
OFD, Oral-Facial-Digital, PVS, pulmonary valve stenosis; TOF, tetralogy of Fallot; VSD, ventricular septal defect.  
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