805 research outputs found

    New Models of f(R) Theories of Gravity

    Full text link
    We introduce new models of f(R) theories of gravity that are generalization of Horava-Lifshitz gravity.Comment: 16 pages, typos corrected, v2:minor changes, references adde

    Observational constraints on braneworld inflation: the effect of a Gauss-Bonnet term

    Get PDF
    High-energy modifications to general relativity introduce changes to the perturbations generated during inflation, and the latest high-precision cosmological data can be used to place constraints on such modified inflation models. Recently it was shown that Randall-Sundrum type braneworld inflation leads to tighter constraints on quadratic and quartic potentials than in general relativity. We investigate how this changes with a Gauss-Bonnet correction term, which can be motivated by string theory. Randall-Sundrum models preserve the standard consistency relation between the tensor spectral index and the tensor-to-scalar ratio. The Gauss-Bonnet term breaks this relation, and also modifies the dynamics and perturbation amplitudes at high energies. We find that the Gauss-Bonnet term tends to soften the Randall-Sundrum constraints. The observational compatibility of the quadratic potential is strongly improved. For a broad range of energy scales, the quartic potential is rescued from marginal rejection. Steep inflation driven by an exponential potential is excluded in the Randall-Sundrum case, but the Gauss-Bonnet term leads to marginal compatibility for sufficient e-folds.Comment: 10 pages, 10 figures, version to appear in Physical Review

    Fractal universe and quantum gravity

    Full text link
    We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.Comment: 4 pages. v2: typos corrected; v3: discussion improved, intuitive introduction added, matches the published versio

    Observational test of inflation in loop quantum cosmology

    Get PDF
    We study in detail the power spectra of scalar and tensor perturbations generated during inflation in loop quantum cosmology (LQC). After clarifying in a novel quantitative way how inverse-volume corrections arise in inhomogeneous settings, we show that they can generate large running spectral indices, which generally lead to an enhancement of power at large scales. We provide explicit formulas for the scalar/tensor power spectra under the slow-roll approximation, by taking into account corrections of order higher than the runnings. We place observational bounds on the inverse-volume quantum correction \delta ~ a^{- \sigma} (\sigma >0, aa is the scale factor) and the slow-roll parameter \epsilon_V for power-law potentials as well as exponential potentials by using the data of WMAP 7yr combined with other observations. We derive the constraints on \delta for two pivot wavenumbers k_0 for several values of \delta. The quadratic potential can be compatible with the data even in the presence of the LQC corrections, but the quartic potential is in tension with observations. We also find that the upper bounds on \delta (k_0) for given \sigma and k_0 are insensitive to the choice of the inflaton potentials

    Degeneracy of consistency equations in braneworld inflation

    Full text link
    In a Randall-Sundrum type II inflationary scenario we compute perturbation amplitudes and spectral indices up to next-to-lowest order in the slow-roll parameters, starting from the well-known lowest-order result for a de Sitter brane. Using two different prescriptions for the tensor amplitude, we show that the braneworld consistency equations are not degenerate with respect to the standard relations and we explore their observational consequences. It is then shown that, while the degeneracy between high- and low-energy regimes can come from suitable values of the cosmological observables, exact functional matching between consistency expressions is plausibly discarded. This result is then extended to the Gauss-Bonnet case.Comment: 16 pages, 3 figures. v3: major revision. Changed title, updated references, rearranged material, new prescription for the tensor spectrum, new figures, extended and more robust conclusion

    Atrioventricular canal defect and genetic syndromes: the unifying role of sonic hedgehog

    Get PDF
    The atrioventricular canal defect (AVCD) is a congenital heart defect (CHD) frequently associated with extracardiac anomalies (75%). Previous observations from a personal series of patients with AVCD and "polydactyly syndromes" showed that the distinct morphology and combination of AVCD features in some of these syndromes is reminiscent of the cardiac phenotype found in heterotaxy, a malformation complex previously associated with functional cilia abnormalities and aberrant Hedgehog (Hh) signaling. Hh signaling coordinates multiple aspects of left-right lateralization and cardiovascular growth. Being active at the venous pole the secondary heart field (SHF) is essential for normal development of dorsal mesenchymal protrusion and AVCD formation and septation. Experimental data show that perturbations of different components of the Hh pathway can lead to developmental errors presenting with partially overlapping manifestations and AVCD as a common denominator. We review the potential role of Hh signaling in the pathogenesis of AVCD in different genetic disorders. AVCD can be viewed as part of a "developmental field," according to the concept that malformations can be due to defects in signal transduction cascades or pathways, as morphogenetic units which may be altered by Mendelian mutations, aneuploidies, and environmental causes

    Cosmological tachyon from cubic string field theory

    Full text link
    The classical dynamics of the tachyon scalar field of cubic string field theory is considered on a cosmological background. Starting from a nonlocal action with arbitrary tachyon potential, which encodes the bosonic and several supersymmetric cases, we study the equations of motion in the Hamilton-Jacobi formalism and with a generalized Friedmann equation, appliable in braneworld or modified gravity models. The cases of cubic (bosonic) and quartic (supersymmetric) tachyon potential in general relativity are automatically included. We comment the validity of the slow-roll approximation, the stability of the cosmological perturbations, and the relation between this tachyon and the Dirac-Born-Infeld one.Comment: 20 pages JHEP style, 1 figure; v4: misprints corrected, matches the published versio

    Cosmological constraints from Gauss-Bonnet braneworld with large-field potentials

    Full text link
    We calculate the spectral index and tensor-to-scalar ratio for patch inflation defined by H2≈βq2VqH^2\approx \beta^2_q V^q and ϕ˙≈−V′/3H\dot{\phi}\approx -V'/3H, using the slow-roll expansion. The patch cosmology arisen from the Gauss-Bonnet braneworld consists of Gauss-Bonnet (GB), Randall-Sundrum (RS), and 4D general relativistic (GR) cosmological models. In this work, we choose large-field potentials of V=V0ϕpV=V_0\phi^p to compare with the observational data. Since second-order corrections are rather small in the slow-roll limit, the leading-order calculation is sufficient to compare with the data. Finally, we show that it is easier to discriminate between quadratic potential and quartic potential in the GB cosmological model rather than the GR or RS cosmological models.Comment: 13 pages, title changed, version to appear in JCA

    Slow-roll corrections to inflaton fluctuations on a brane

    Get PDF
    Quantum fluctuations of an inflaton field, slow-rolling during inflation are coupled to metric fluctuations. In conventional four dimensional cosmology one can calculate the effect of scalar metric perturbations as slow-roll corrections to the evolution of a massless free field in de Sitter spacetime. This gives the well-known first-order corrections to the field perturbations after horizon-exit. If inflaton fluctuations on a four dimensional brane embedded in a five dimensional bulk spacetime are studied to first-order in slow-roll then we recover the usual conserved curvature perturbation on super-horizon scales. But on small scales, at high energies, we find that the coupling to the bulk metric perturbations cannot be neglected, leading to a modified amplitude of vacuum oscillations on small scales. This is a large effect which casts doubt on the reliability of the usual calculation of inflaton fluctuations on the brane neglecting their gravitational coupling.Comment: 18 pages, 4 figure

    Slow-roll corrections to inflaton fluctuations on a brane

    Get PDF
    Quantum fluctuations of an inflaton field, slow-rolling during inflation are coupled to metric fluctuations. In conventional four dimensional cosmology one can calculate the effect of scalar metric perturbations as slow-roll corrections to the evolution of a massless free field in de Sitter spacetime. This gives the well-known first-order corrections to the field perturbations after horizon-exit. If inflaton fluctuations on a four dimensional brane embedded in a five dimensional bulk spacetime are studied to first-order in slow-roll then we recover the usual conserved curvature perturbation on super-horizon scales. But on small scales, at high energies, we find that the coupling to the bulk metric perturbations cannot be neglected, leading to a modified amplitude of vacuum oscillations on small scales. This is a large effect which casts doubt on the reliability of the usual calculation of inflaton fluctuations on the brane neglecting their gravitational coupling.Comment: 18 pages, 4 figure
    • …
    corecore