20 research outputs found

    LHC updated hadronic interaction packages analyzed up to cosmic-ray energies

    Get PDF
    The results of high energy simulated experiments where a given hadronic particle impacts on a given target are statistically analyzed. The energy range of the projectiles goes from below the LHC scale up to the highest cosmic ray energies. This study was carried out by using the pre- and post-LHC versions of the hadronic interaction models QGSJET, EPOS and SIBYLL. Our analysis indicates that the post-LHC models present smaller differences in various quantities that characterize the secondary particles produced after the hadronic collisions, in comparison with the corresponding differences that are found comparing the respective old (pre-LHC) versions of the hadronic models. However, it is also found that there exist some discrepancies among models that persist even at the LHC energy scale, that call for further theoretical investigation. An additional analysis of the impact that different modeling of hadronic collisions has on air shower development is also included. It consists of a detailed study of the impact of the different pre- and post-LHC versions of the hadronic models considered, for relevant observables like the muon production depth distribution.Fil: Calcagni, Laura Randa. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: García Canal, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Sciutto, Sergio Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Tarutina, Tatiana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentin

    LHC updated hadronic interaction packages analyzed up to cosmic-ray energies

    Get PDF
    The results of high energy simulated experiments where a given hadronic particle impacts on a given target are statistically analyzed. The energy range of the projectiles goes from below the LHC scale up to the highest cosmic ray energies. This study was carried out by using the pre- and post-LHC versions of the hadronic interaction models QGSJET, EPOS and SIBYLL. Our analysis indicates that the post-LHC models present smaller differences in various quantities that characterize the secondary particles produced after the hadronic collisions, in comparison with the corresponding differences that are found comparing the respective old (pre-LHC) versions of the hadronic models. However, it is also found that there exist some discrepancies among models that persist even at the LHC energy scale, that call for further theoretical investigation. An additional analysis of the impact that different modeling of hadronic collisions has on air shower development is also included. It consists of a detailed study of the impact of the different pre- and post-LHC versions of the hadronic models considered, for relevant observables like the muon production depth distribution.Facultad de Ciencias ExactasInstituto de Física La Plat

    Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory

    Get PDF
    The determination of the primary energy of extensive air showers using the uorescence detection technique requires an estimation of the energy carried away by particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work we present a new method to obtain the invisible energy from events detected by the Pierre Auger Observatory. The method uses measurements of the muon number at ground level, and it allows us to reduce signi cantly the systematic uncertainties related to the mass composition and the high energy hadronic interaction models, and consequently to improve the estimation of the energy scale of the Observatory.La nómina completa de autores puede verse en el archivo asociado al ítem.Facultad de Ciencias Exacta

    Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory

    Get PDF
    The determination of the primary energy of extensive air showers using the uorescence detection technique requires an estimation of the energy carried away by particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work we present a new method to obtain the invisible energy from events detected by the Pierre Auger Observatory. The method uses measurements of the muon number at ground level, and it allows us to reduce signi cantly the systematic uncertainties related to the mass composition and the high energy hadronic interaction models, and consequently to improve the estimation of the energy scale of the Observatory.La nómina completa de autores puede verse en el archivo asociado al ítem.Facultad de Ciencias Exacta

    Search for magnetically-induced signatures in the arrival directions of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory

    Get PDF
    We search for signals of magnetically-induced effects in the arrival directions of ultra-high-energy cosmic rays detected at the Pierre Auger Observatory. We apply two different methods. One is a search for sets of events that show a correlation between their arrival direction and the inverse of their energy, which would be expected if they come from the same point-like source, they have the same electric charge and their deflection is relatively small and coherent. We refer to these sets of events as "multiplets". The second method, called "thrust", is a principal axis analysis aimed to detect the elongated patterns in a region of interest. We study the sensitivity of both methods using a benchmark simulation and we apply them to data in two different searches. The first search is done assuming as source candidates a list of nearby active galactic nuclei and starburst galaxies. The second is an all-sky blind search. We report the results and we find no statistically significant features. We discuss the compatibility of these results with the indications on the mass composition inferred from data of the Pierre Auger Observatory.La lista completa de autores puede verse en el archivo asociado.Instituto de Física La Plat

    Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory

    Get PDF
    With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60 and 84 . In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km2 with radio signals detectable in the 30 to 80MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or scattering in the atmosphere, the area illuminated by radio signals grows with the zenith angle of the air shower. Inclined air showers with EeV energies are thus measurable with sparse radio-antenna arrays with grid sizes of a km or more. This is particularly attractive as radio detection provides direct access to the energy in the electromagnetic cascade of an air shower, which in case of inclined air showers is not accessible by arrays of particle detectors on the ground.La lista completa de autores puede verse en el archivo asociado.Instituto de Física La Plat

    Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory

    Get PDF
    The determination of the primary energy of extensive air showers using the uorescence detection technique requires an estimation of the energy carried away by particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work we present a new method to obtain the invisible energy from events detected by the Pierre Auger Observatory. The method uses measurements of the muon number at ground level, and it allows us to reduce signi cantly the systematic uncertainties related to the mass composition and the high energy hadronic interaction models, and consequently to improve the estimation of the energy scale of the Observatory.La nómina completa de autores puede verse en el archivo asociado al ítem.Facultad de Ciencias Exacta

    Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope

    Get PDF
    Extensive air showers, originating from ultra-high energy cosmic rays, have been successfully measured through the use of arrays of water-Cherenkov detectors (WCDs). Sophisticated analyses exploiting WCD data have made it possible to demonstrate that shower simulations, based on different hadronic-interaction models, cannot reproduce the observed number of muons at the ground. The accurate knowledge of the WCD response to muons is paramount in establishing the exact level of this discrepancy. In this work, we report on a study of the response of a WCD of the Pierre Auger Observatory to atmospheric muons performed with a hodoscope made of resistive plate chambers (RPCs), enabling us to select and reconstruct nearly 600 thousand single muon trajectories with zenith angles ranging from 0º to 55º. Comparison of distributions of key observables between the hodoscope data and the predictions of dedicated simulations allows us to demonstrate the accuracy of the latter at a level of 2%. As the WCD calibration is based on its response to atmospheric muons, the hodoscope data are also exploited to show the long-term stability of the procedure.La lista completa de autores que integran el documento puede consultarse en el archivo.Facultad de Ciencias ExactasInstituto de Física La Plat

    Measurement of the average shape of longitudinal profiles of cosmic-ray air showers at the Pierre Auger Observatory

    Get PDF
    The profile of the longitudinal development of showers produced by ultra-high energy cosmic rays carries information related to the interaction properties of the primary particles with atmospheric nuclei. In this work, we present the first measurement of the average shower profile in traversed atmospheric depth at the Pierre Auger Observatory. The shapes of profiles are well reproduced by the Gaisser-Hillas parametrization within the range studied, for E > 1017:8 eV. A detailed analysis of the systematic uncertainties is performed using 10 years of data and a full detector simulation. The average shape is quantified using two variables related to the width and asymmetry of the profile, and the results are compared with predictions of hadronic interaction models for different primary particles.La lista completa de autores puede verse en el archivo asociado.Instituto de Física La Plat

    A Search for Ultra-high-energy Neutrinos from TXS 0506+056 Using the Pierre Auger Observatory

    Get PDF
    Results of a search for ultra-high-energy neutrinos with the Pierre Auger Observatory from the direction of the blazar TXS 0506+056 are presented. They were obtained as part of the follow-up that stemmed from the detection of high-energy neutrinos and gamma rays with IceCube, Fermi-LAT, MAGIC, and other detectors of electromagnetic radiation in several bands. The Pierre Auger Observatory is sensitive to neutrinos in the energy range from 100 PeV to 100 EeV and in the zenith-angle range from θ = 60° to θ = 95°, where the zenith angle is measured from the vertical direction. No neutrinos from the direction of TXS 0506+056 have been found. The results were analyzed in three periods: One of 6 months around the detection of IceCube-170922 A, coinciding with a flare period of TXS 0506+056, a second one of 110 days during which the IceCube collaboration found an excess of 13 neutrinos from a direction compatible with TXS 0506+056, and a third one from 2004 January 1 up to 2018 August 31, over which the Pierre Auger Observatory has been taking data. The sensitivity of the Observatory is addressed for different spectral indices by considering the fluxes that would induce a single expected event during the observation period. For indices compatible with those measured by the IceCube collaboration the expected number of neutrinos at the Observatory is well below one. Spectral indices as hard as 1.5 would have to apply in this energy range to expect a single event to have been detected.Instituto de Física La Plat
    corecore