446 research outputs found

    Prediction of Dynamic Plasmid Production by Recombinant Escherichia coli Fed-Batch Cultivations with a Generalized Regression Neural Network

    Get PDF
    A generalized regression neural network with external feedback was used to predict plasmid production in a fed-batch cultivation of recombinant Escherichia coli. The neural network was built out of the experimental data obtained on a few cultivations, of which the general strategy was based on an initial batch phase followed by an exponential feeding phase. The different cultivation conditions used resulted in significant differences in bacterial growth and plasmid production. The obtained model allows estimation of the experimental outputs (biomass, glucose, acetate and plasmid) based on the bioreactor starting conditions and the following on-line inputs: feeding rate, dissolved oxygen concentration and bioreactor stirring speed. Therefore, the proposed methodology presents a quick, simple and reliable way to perform on-line feedback prediction of the dynamic behaviour of the complex plasmid production process, based on simple on-line input data obtained directly from the bioreactor control unit and with few cultivation experiments for neural network learning

    Idiopathic epilepsies with seizures precipitated by fever and SCN1A abnormalities.

    Get PDF
    Epilepsia. 2007 Sep;48(9):1678-85. Epub 2007 Jun 11. Idiopathic epilepsies with seizures precipitated by fever and SCN1A abnormalities. Marini C, Mei D, Temudo T, Ferrari AR, Buti D, Dravet C, Dias AI, Moreira A, Calado E, Seri S, Neville B, Narbona J, Reid E, Michelucci R, Sicca F, Cross HJ, Guerrini R. SourceEpilepsy, Neurophysiology and Neurogenetic Unit, Institute of Child Neurology and Psychiatry, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy. Abstract PURPOSE: SCN1A is the most clinically relevant epilepsy gene, most mutations lead to severe myoclonic epilepsy of infancy (SMEI) and generalized epilepsy with febrile seizures plus (GEFS+). We studied 132 patients with epilepsy syndromes with seizures precipitated by fever, and performed phenotype-genotype correlations with SCN1A alterations. METHODS: We included patients with SMEI including borderline SMEI (SMEB), GEFS+, febrile seizures (FS), or other seizure types precipitated by fever. We performed a clinical and genetic study focusing on SCN1A, using dHPLC, gene sequencing, and MLPA to detect genomic deletions/duplications on SMEI/SMEB patients. RESULTS: We classified patients as: SMEI/SMEB = 55; GEFS+= 26; and other phenotypes = 51. SCN1A analysis by dHPLC/sequencing revealed 40 mutations in 37 SMEI/SMEB (67%) and 3 GEFS+ (11.5%) probands. MLPA showed genomic deletions in 2 of 18 SMEI/SMEB. Most mutations were de novo (82%). SMEB patients carrying mutations (8) were more likely to have missense mutations (62.5%), conversely SMEI patients (31) had more truncating, splice site or genomic alterations (64.5%). SMEI/SMEB with truncating, splice site or genomic alterations had a significantly earlier age of onset of FS compared to those with missense mutations and without mutations (p = 0.00007, ANOVA test). None of the remaining patients with seizures precipitated by fever carried SCN1A mutations. CONCLUSION: We obtained a frequency of 71%SCN1A abnormalities in SMEI/SMEB and of 11.5% in GEFS+ probands. MLPA complements DNA sequencing of SCN1A increasing the mutation detection rate. SMEI/SMEB with truncating, splice site or genomic alterations had a significantly earlier age of onset of FS. This study confirms the high sensitivity of SCN1A for SMEI/SMEB phenotypes

    Ballistic Josephson junctions in edge-contacted graphene

    Full text link
    Hybrid graphene-superconductor devices have attracted much attention since the early days of graphene research. So far, these studies have been limited to the case of diffusive transport through graphene with poorly defined and modest quality graphene-superconductor interfaces, usually combined with small critical magnetic fields of the superconducting electrodes. Here we report graphene based Josephson junctions with one-dimensional edge contacts of Molybdenum Rhenium. The contacts exhibit a well defined, transparent interface to the graphene, have a critical magnetic field of 8 Tesla at 4 Kelvin and the graphene has a high quality due to its encapsulation in hexagonal boron nitride. This allows us to study and exploit graphene Josephson junctions in a new regime, characterized by ballistic transport. We find that the critical current oscillates with the carrier density due to phase coherent interference of the electrons and holes that carry the supercurrent caused by the formation of a Fabry-P\'{e}rot cavity. Furthermore, relatively large supercurrents are observed over unprecedented long distances of up to 1.5 μ\mum. Finally, in the quantum Hall regime we observe broken symmetry states while the contacts remain superconducting. These achievements open up new avenues to exploit the Dirac nature of graphene in interaction with the superconducting state.Comment: Updated version after peer review. Includes supplementary material and ancillary file with source code for tight binding simulation

    Viewing scenes of the history of chemistry through the opera glass

    Get PDF
    Artistic creation has always reflected the spirit of the moment and opera has not been an exception. There are several examples of operas which appeared at key moments of the development of science, portraying them. Additionally there are also operas that emerged after scientific events or the lifetime of the scientists they were inspired on. In what concerns chemistry, the first category could be exemplified by the apothecary operas (already discussed by the author in a previous paper of this journal) while the others could be illustrated by recent operas such as Dr. Atomic or Madame Curie. Continuing our endeavor of establishing relations between opera and chemistry, and considering that history of science plays an important role in the process of teaching and learning sciences, some milestones of the history of chemistry are here revisited through the opera glass. The operas analyzed have been grouped in the following categories: Operas of Fire and Metallurgy, Operas of the Philosophers of Antiquity, Operas of Alchemy, Operas of the Age of Enlightenment, Operas of the Revolutions and Operas of Entropy.Thanks are due to the Foundation for Science and Technology (FCT–Portugal) and FEDER (European Fund for Regional Development)-COMPETE/QREN/EU for financial support through the research unity PEst-C/QUI/UI686/2013.
    corecore