9,617 research outputs found

    Entanglement entropy and quantum field theory: a non-technical introduction

    Full text link
    In these proceedings we give a pedagogical and non-technical introduction to the Quantum Field Theory approach to entanglement entropy. Particular attention is devoted to the one space dimensional case, with a linear dispersion relation, that, at a quantum critical point, can be effectively described by a two-dimensional Conformal Field Theory.Comment: 10 Pages, 2 figures. Talk given at the conference "Entanglement in Physical and information sciences", Centro Ennio de Giorgi, Pisa, December 200

    E-ELT constraints on runaway dilaton scenarios

    Get PDF
    We use a combination of simulated cosmological probes and astrophysical tests of the stability of the fine-structure constant α\alpha, as expected from the forthcoming European Extremely Large Telescope (E-ELT), to constrain the class of string-inspired runaway dilaton models of Damour, Piazza and Veneziano. We consider three different scenarios for the dark sector couplings in the model and discuss the observational differences between them. We improve previously existing analyses investigating in detail the degeneracies between the parameters ruling the coupling of the dilaton field to the other components of the universe, and studying how the constraints on these parameters change for different fiducial cosmologies. We find that if the couplings are small (e.g., αb=αV∼0\alpha_b=\alpha_V\sim0) these degeneracies strongly affect the constraining power of future data, while if they are sufficiently large (e.g., αb≳10−5−αV≳0.05\alpha_b\gtrsim10^{-5}-\alpha_V\gtrsim0.05, as in agreement with current constraints) the degeneracies can be partially broken. We show that E-ELT will be able to probe some of this additional parameter space.Comment: 16 pages, 8 figures. Updated version matching the one accepted by JCA

    The Ubiquitous 'c': from the Stefan-Boltzmann Law to Quantum Information

    Full text link
    I discuss various aspects of the role of the conformal anomaly number c in 2- and 1+1-dimensional critical behaviour: its appearance as the analogue of Stefan's constant, its fundamental role in conformal field theory, in the classification of 2d universality classes, and as a measure of quantum entanglement, among other topics.Comment: 8 pages, 2 figures. Boltzmann Medal Lecture, Statphys24, Cairns 2010. v3: minor revision

    Dynamical phase coexistence: A simple solution to the "savanna problem"

    Get PDF
    We introduce the concept of 'dynamical phase coexistence' to provide a simple solution for a long-standing problem in theoretical ecology, the so-called "savanna problem". The challenge is to understand why in savanna ecosystems trees and grasses coexist in a robust way with large spatio-temporal variability. We propose a simple model, a variant of the Contact Process (CP), which includes two key extra features: varying external (environmental/rainfall) conditions and tree age. The system fluctuates locally between a woodland and a grassland phase, corresponding to the active and absorbing phases of the underlying pure contact process. This leads to a highly variable stable phase characterized by patches of the woodland and grassland phases coexisting dynamically. We show that the mean time to tree extinction under this model increases as a power-law of system size and can be of the order of 10,000,000 years in even moderately sized savannas. Finally, we demonstrate that while local interactions among trees may influence tree spatial distribution and the order of the transition between woodland and grassland phases, they do not affect dynamical coexistence. We expect dynamical coexistence to be relevant in other contexts in physics, biology or the social sciences.Comment: 8 pages, 7 figures. Accepted for publication in Journal of Theoretical Biolog

    Exact boundary conditions in numerical relativity using multiple grids: scalar field tests

    Full text link
    Cauchy-Characteristic Matching (CCM), the combination of a central 3+1 Cauchy code with an exterior characteristic code connected across a time-like interface, is a promising technique for the generation and extraction of gravitational waves. While it provides a tool for the exact specification of boundary conditions for the Cauchy evolution, it also allows to follow gravitational radiation all the way to infinity, where it is unambiguously defined. We present a new fourth order accurate finite difference CCM scheme for a first order reduction of the wave equation around a Schwarzschild black hole in axisymmetry. The matching at the interface between the Cauchy and the characteristic regions is done by transfering appropriate characteristic/null variables. Numerical experiments indicate that the algorithm is fourth order convergent. As an application we reproduce the expected late-time tail decay for the scalar field.Comment: 14 pages, 5 figures. Included changes suggested by referee

    Entanglement Entropy in Extended Quantum Systems

    Full text link
    After a brief introduction to the concept of entanglement in quantum systems, I apply these ideas to many-body systems and show that the von Neumann entropy is an effective way of characterising the entanglement between the degrees of freedom in different regions of space. Close to a quantum phase transition it has universal features which serve as a diagnostic of such phenomena. In the second part I consider the unitary time evolution of such systems following a `quantum quench' in which a parameter in the hamiltonian is suddenly changed, and argue that finite regions should effectively thermalise at late times, after interesting transient effects.Comment: 6 pages. Plenary talk delivered at Statphys 23, Genoa, July 200

    Quantum Quench from a Thermal Initial State

    Full text link
    We consider a quantum quench in a system of free bosons, starting from a thermal initial state. As in the case where the system is initially in the ground state, any finite subsystem eventually reaches a stationary thermal state with a momentum-dependent effective temperature. We find that this can, in some cases, even be lower than the initial temperature. We also study lattice effects and discuss more general types of quenches.Comment: 6 pages, 2 figures; short published version, added references, minor change

    Entanglement entropy of two disjoint intervals in c=1 theories

    Full text link
    We study the scaling of the Renyi entanglement entropy of two disjoint blocks of critical lattice models described by conformal field theories with central charge c=1. We provide the analytic conformal field theory result for the second order Renyi entropy for a free boson compactified on an orbifold describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual line. We have checked this prediction in cluster Monte Carlo simulations of the classical two dimensional AT model. We have also performed extensive numerical simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor network techniques that allowed to obtain the reduced density matrices of disjoint blocks of the spin-chain and to check the correctness of the predictions for Renyi and entanglement entropies from conformal field theory. In order to match these predictions, we have extrapolated the numerical results by properly taking into account the corrections induced by the finite length of the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure

    Field-theory results for three-dimensional transitions with complex symmetries

    Full text link
    We discuss several examples of three-dimensional critical phenomena that can be described by Landau-Ginzburg-Wilson ϕ4\phi^4 theories. We present an overview of field-theoretical results obtained from the analysis of high-order perturbative series in the frameworks of the ϵ\epsilon and of the fixed-dimension d=3 expansions. In particular, we discuss the stability of the O(N)-symmetric fixed point in a generic N-component theory, the critical behaviors of randomly dilute Ising-like systems and frustrated spin systems with noncollinear order, the multicritical behavior arising from the competition of two distinct types of ordering with symmetry O(n1n_1) and O(n2n_2) respectively.Comment: 9 pages, Talk at the Conference TH2002, Paris, July 200
    • …
    corecore